Exploring patient experiences and concerns in the online Cochlear implant community: A cross‐sectional study and validation of automated topic modelling

Author:

Williams Christopher Y. K.12ORCID,Li Rosia X.1,Luo Michael Y.1,Bance Manohar3ORCID

Affiliation:

1. School of Clinical Medicine University of Cambridge Cambridge UK

2. Cambridge University Hospitals NHS Foundation Trust Cambridge UK

3. Department of Otolaryngology–Head and Neck Surgery Addenbrooke's Hospital Cambridge UK

Abstract

AbstractObjectiveThere is a paucity of research examining patient experiences of cochlear implants. We sought to use natural language processing methods to explore patient experiences and concerns in the online cochlear implant (CI) community.Materials and MethodsCross‐sectional study of posts on the online Reddit r/CochlearImplants forum from 1 March 2015 to 11 November 2021. Natural language processing using the BERTopic automated topic modelling technique was employed to cluster posts into semantically similar topics. Topic categorisation was manually validated by two independent reviewers and Cohen's kappa calculated to determine inter‐rater reliability between machine vs human and human vs human categorisation.ResultsWe retrieved 987 posts from 588 unique Reddit users on the r/CochlearImplants forum. Posts were initially categorised by BERTopic into 16 different Topics, which were increased to 23 Topics following manual inspection. The most popular topics related to CI connectivity (n = 112), adults considering getting a CI (n = 107), surgery‐related posts (n = 89) and day‐to‐day living with a CI (n = 85). Cohen's kappa among all posts was 0.62 (machine vs. human) and 0.72 (human vs. human), and among categorised posts was 0.85 (machine vs. human) and 0.84 (human vs. human).ConclusionsThis cross‐sectional study of social media discussions among the online cochlear implant community identified common attitudes, experiences and concerns of patients living with, or seeking, a cochlear implant. Our validation of natural language processing methods to categorise topics shows that automated analysis of similar Otolaryngology‐related content is a viable and accurate alternative to manual qualitative approaches.

Publisher

Wiley

Subject

Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3