Evaluation of environmental conditions as a decontamination approach for SARS-CoV-2 when applied to common library, archive and museum-related materials

Author:

Richter William R.1ORCID,Sunderman Michelle M.1,Mera Tom O.1,O'Brien Kim A.1,Morgan Kendra2,Streams Sharon2

Affiliation:

1. Battelle Memorial Institute Columbus OH USA

2. OCLC Dublin OH USA

Abstract

Abstract Aims The purpose of this study was to evaluate the effects of ambient or altered environmental conditions on the inactivation of SARS-CoV-2 applied to materials common in libraries, archives and museums. Methods and Results Porous and non-porous materials (e.g. paper, plastic protective book cover) were inoculated with approximately 1 × 105 TCID50 SARS CoV-2 (USA-WA1/2020), dried, placed within test chamber in either a stacked or unstacked configuration, and exposed to environmental conditions ranging from 4 to 29°C at 40 ± 10% relative humidity. The amount of infectious SARS-CoV-2 was then assessed at various timepoints from 0 to 10 days. Ambient conditions resulted in varying inactivation rates per material type. Virus inactivation rate decreased when materials were stacked or at colder temperatures. Virus inactivation rate increased when materials were unstacked or at warmer temperatures. Conclusions SARS-CoV-2 at ambient conditions resulted in the inactivation of virus below limit of quantitation (LOQ) for all materials by Day 8. Warmer temperatures, for a subset of materials, increased SARS-CoV-2 inactivation, and all were <LOQ by Day 3. Significance and Impact of the Study These results provide information for the library, archives and museum community regarding the inactivation of SARS-CoV-2, showing that inactivation is possible using prescribed environmental conditions and is a potential method of decontamination for items not compatible with common liquid disinfectants.

Funder

Institute of Museum and Library Services

OCLC

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3