Walking and falling: Using robot simulations to model the role of errors in infant walking

Author:

Ossmy Ori1,Han Danyang2ORCID,MacAlpine Patrick3,Hoch Justine4,Stone Peter35,Adolph Karen E.2ORCID

Affiliation:

1. Centre for Brain and Cognitive Development & Department of Psychological Sciences Birkbeck University of London London UK

2. Department of Psychology New York University New York New York USA

3. Department of Computer Science The University of Texas at Austin Austin Texas USA

4. Department of Psychology and Human Development Vanderbilt University Nashville Tennessee USA

5. Sony AI Austin Texas USA

Abstract

AbstractWhat is the optimal penalty for errors in infant skill learning? Behavioral analyses indicate that errors are frequent but trivial as infants acquire foundational skills. In learning to walk, for example, falling is commonplace but appears to incur only a negligible penalty. Behavioral data, however, cannot reveal whether a low penalty for falling is beneficial for learning to walk. Here, we used a simulated bipedal robot as an embodied model to test the optimal penalty for errors in learning to walk. We trained the robot to walk using 12,500 independent simulations on walking paths produced by infants during free play and systematically varied the penalty for falling—a level of precision, control, and magnitude impossible with real infants. When trained with lower penalties for falling, the robot learned to walk farther and better on familiar, trained paths and better generalized its learning to novel, untrained paths. Indeed, zero penalty for errors led to the best performance for both learning and generalization. Moreover, the beneficial effects of a low penalty were stronger for generalization than for learning. Robot simulations corroborate prior behavioral data and suggest that a low penalty for errors helps infants learn foundational skills (e.g., walking, talking, and social interactions) that require immense flexibility, creativity, and adaptability.Research Highlights During infant skill acquisition, errors are commonplace but appear to incur a low penalty; when learning to walk, for example, falls are frequent but trivial. To test the optimal penalty for errors, we trained a simulated robot to walk using real infant paths and systematically manipulated the penalty for falling. Lower penalties in training led to better performance on familiar, trained paths and on novel untrained paths, and zero penalty was most beneficial. Benefits of a low penalty were stronger for untrained than for trained paths, suggesting that discounting errors facilitates acquiring skills that require immense flexibility and generalization.

Funder

National Institute of Child Health and Human Development

Defense Advanced Research Projects Agency

Publisher

Wiley

Subject

Cognitive Neuroscience,Developmental and Educational Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3