Dynamic utilization of low-molecular-weight organic substrates across a microbial growth rate gradient

Author:

Cyle K. Taylor1ORCID,Klein Annaleise R.23,Aristilde Ludmilla24,Martínez Carmen Enid1

Affiliation:

1. Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences Cornell University Ithaca NY USA

2. Department of Biological and Environmental Engineering Cornell University, Riley-Robb Hall Ithaca NY USA

3. Australian Synchrotron Australian Nuclear Science and Technology Organisation Clayton VIC Australia

4. Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science Northwestern University Evanston IL USA

Abstract

Abstract Aim Low-molecular-weight organic substances (LMWOSs) are at the nexus between micro-organisms, plant roots, detritus, and the soil mineral matrix. The nominal oxidation state of carbon (NOSC) has been suggested as a potential parameter for modelling microbial uptake rates of LMWOSs and the efficiency of carbon incorporation into new biomass. Methods and Results In this study, we assessed the role of compound class and oxidation state on uptake kinetics and substrate-specific carbon use efficiency (SUE) during the growth of three model soil micro-organisms, a fungal isolate (Penicillium spinulosum) and two bacterial isolates (Paraburkholderia solitsugae, and Ralstonia pickettii). Isolates were chosen that spanned a growth rate gradient (0.046–0.316 h−1) in media containing 34 common LMWOSs at realistically low initial concentrations (25 μM each). Clustered, co-utilization of LMWOSs occurred for all three organisms. Potential trends (p < 0.05) for early utilization of more oxidized substrates were present for the two bacterial isolates (P. solitsugae and R. pickettii), but high variability (R2 < 0.15) and a small effect of NOSC indicate these relationships are not useful for prediction. The SUEs of selected substrates ranged from 0.16 to 0.99 and there was no observed relationship between NOSC and SUE. Conclusion Our results do not provide compelling population-level support for NOSC as a predictive tool for either uptake kinetics or the efficiency of use of LMWOS in soil solution. Significance and Impact of the Study Metabolic strategies of organisms are likely more important than chemical identity in determining LMWOS cycling in soils. Previous community-level observations may be biased towards fast-responding bacterial community members.

Funder

College of Agriculture and Life Sciences, Cornell University

National Institute of Food and Agriculture

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3