Mitochondrial phylogenomics of the Australian scribbly gum moth Ogmograptis (Lepidoptera: Bucculatricidae) and an examination of deep‐level relationships within Lepidoptera

Author:

Cameron Stephen L.1ORCID

Affiliation:

1. Department of Entomology Purdue University West Lafayette Indiana USA

Abstract

AbstractLarval feeding by the moth genus Ogmograptis (Bucculatricidae: Lepidoptera) creates one of the most iconic features of the Australian bush—the ‘scribbles’ found on smooth‐barked Eucalyptus. The taxonomic history of Ogmograptis has been challenging, with members of the genus being initially described in four different genera representing three different superfamilies. While prior phylogenetic analysis has placed Ogmograptis within the Bucculatricidae, these findings were not strongly supported and there was poor resolution of the early diverging, non‐Apoditrysia superfamilies that Ogmograptis has been assigned to by different authors. As a consequence, the unique larval biology of scribbly moths cannot yet be interpreted in an evolutionary context. Phylogenomic analysis of whole mitochondrial (mt) genome data for Ogmograptis, related non‐Apoditrysia and taxa representing the superfamily‐level diversity of the order strongly supports its placement within the Bucculatricidae, a monophyletic Gracillarioidea and a clade of Gracillarioidea + Yponomeutoidea that was sister to the Apoditrysia. The hypermetamorphic larval development in Ogmograptis can thus be interpreted as an elaboration of the ancestral pattern of the clade Gracillarioidea + Yponomeutoidea that has specialised for phellogen/callus feeding within the bark. The utility of mt genomes for deep‐level phylogenetic study of the Lepidoptera is reviewed against prior multi‐locus and nuclear phylogenomic datasets. Mt phylogenomic analyses are sensitive to analytical methods and the inclusion versus exclusion of high‐variability data partitions for deep‐level relationships, already shown to be uncertain by multi‐locus or nuclear phylogenomic analyses, in particular relationships between apoditrysian and obtectomeran superfamilies. While mt genomes are ideal for examining the relationships of rare, physically small or difficult to collect taxa such as Ogmograptis, due to the low technical hurdles to collecting whole genomes, continued attention to the analytical sensitivities of phylogenies that use this data source is needed to reliably advance our understanding of deep lepidopteran evolution.

Funder

Australian Research Council

National Science Foundation

Commonwealth Scientific and Industrial Research Organisation

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3