Two‐stage deep‐learning‐based colonoscopy polyp detection incorporating fisheye and reflection correction

Author:

Hsu Chen‐Ming123ORCID,Chen Tsung‐Hsing23,Hsu Chien‐Chang4,Wu Che‐Hao4,Lin Chun‐Jung23,Le Puo‐Hsien23,Lin Cheng‐Yu2,Kuo Tony2

Affiliation:

1. Department of Gastroenterology and Hepatology Chang Gung Memorial Hospital Taoyuan Branch Taoyuan Taiwan

2. Department of Gastroenterology and Hepatology Chang Gung Memorial Hospital Linkou Main Branch Taoyuan Taiwan

3. Chang Gung University College of Medicine Taoyuan Taiwan

4. Department of Computer Science and Information Engineering Fu Jen Catholic University Taipei Taiwan

Abstract

AbstractBackground and AimColonoscopy is a useful method for the diagnosis and management of colorectal diseases. Many computer‐aided systems have been developed to assist clinicians in detecting colorectal lesions by analyzing colonoscopy images. However, fisheye‐lens distortion and light reflection in colonoscopy images can substantially affect the clarity of these images and their utility in detecting polyps. This study proposed a two‐stage deep‐learning model to correct distortion and reflections in colonoscopy images and thus facilitate polyp detection.MethodsImages were collected from the PolypSet dataset, the Kvasir‐SEG dataset, and one medical center's patient archiving and communication system. The training, validation, and testing datasets comprised 808, 202, and 1100 images, respectively. The first stage involved the correction of fisheye‐related distortion in colonoscopy images and polyp detection, which was performed using a convolutional neural network. The second stage involved the use of generative and adversarial networks for correcting reflective colonoscopy images before the convolutional neural network was used for polyp detection.ResultsThe model had higher accuracy when it was validated using corrected images than when it was validated using uncorrected images (96.8% vs 90.8%, P < 0.001). The model's accuracy in detecting polyps in the Kvasir‐SEG dataset reached 96%, and the area under the receiver operating characteristic curve was 0.94.ConclusionThe proposed model can facilitate the clinical diagnosis of colorectal polyps and improve the quality of colonoscopy.

Funder

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3