Allelopathy and allelobiosis: efficient and economical alternatives in agroecosystems

Author:

Han M.123ORCID,Yang H.123,Huang H.123,Du J.123,Zhang S.456,Fu Y.456

Affiliation:

1. Key Laboratory of Forest Plant Ecology, Ministry of Education Northeast Forestry University Harbin China

2. Engineering Research Center of Forest Bio‐Preparation, Ministry of Education Northeast Forestry University Harbin China

3. College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China

4. The College of Forestry Beijing Forestry University Beijing China

5. National Engineering Research Center of Tree Breeding and Ecological Restoration Beijing China

6. Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands National Forestry and Grassland Administration Shuangyashan China

Abstract

AbstractChemical interactions in plants often involve plant allelopathy and allelobiosis. Allelopathy is an ecological phenomenon leading to interference among organisms, while allelobiosis is the transmission of information among organisms. Crop failures and low yields caused by inappropriate management can be related to both allelopathy and allelobiosis. Therefore, research on these two phenomena and the role of chemical substances in both processes will help us to understand and upgrade agroecosystems. In this review, substances involved in allelopathy and allelobiosis in plants are summarized. The influence of environmental factors on the generation and spread of these substances is discussed, and relationships between allelopathy and allelobiosis in interspecific, intraspecific, plant–micro‐organism, plant–insect, and mechanisms, are summarized. Furthermore, recent results on allelopathy and allelobiosis in agroecosystem are summarized and will provide a reference for the future application of allelopathy and allelobiosis in agroecosystem.

Funder

Higher Education Discipline Innovation Project

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3