An automated sleep staging tool based on simple statistical features of mice electroencephalography (EEG) and electromyography (EMG) data

Author:

Yamada Rikuhiro G.12ORCID,Matsuzawa Kyoko1,Ode Koji L.3,Ueda Hiroki R.123

Affiliation:

1. Laboratory for Synthetic Biology RIKEN Center for Biosystems Dynamics Research Osaka Japan

2. Department of Systems Biology, Institute of Life Science Kurume University Fukuoka Japan

3. Department of Systems Pharmacology, Graduate School of Medicine The University of Tokyo Tokyo Japan

Abstract

AbstractElectroencephalogram (EEG) and electromyogram (EMG) are fundamental tools in sleep research. However, investigations into the statistical properties of rodent EEG/EMG signals in the sleep–wake cycle have been limited. The lack of standard criteria in defining sleep stages forces researchers to rely on human expertise to inspect EEG/EMG. The recent increasing demand for analysing large‐scale and long‐term data has been overwhelming the capabilities of human experts. In this study, we explored the statistical features of EEG signals in the sleep–wake cycle. We found that the normalized EEG power density profile changes its lower and higher frequency powers to a comparable degree in the opposite direction, pivoting around 20–30 Hz between the NREM sleep and the active brain state. We also found that REM sleep has a normalized EEG power density profile that overlaps with wakefulness and a characteristic reduction in the EMG signal. Based on these observations, we proposed three simple statistical features that could span a 3D space. Each sleep–wake stage formed a separate cluster close to a normal distribution in the 3D space. Notably, the suggested features are a natural extension of the conventional definition, making it useful for experts to intuitively interpret the EEG/EMG signal alterations caused by genetic mutations or experimental treatments. In addition, we developed an unsupervised automatic staging algorithm based on these features. The developed algorithm is a valuable tool for expediting the quantitative evaluation of EEG/EMG signals so that researchers can utilize the recent high‐throughput genetic or pharmacological methods for sleep research.

Funder

Exploratory Research for Advanced Technology

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Human Frontier Science Program

Japan Agency for Medical Research and Development

RIKEN Center for Biosystems Dynamics Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3