The physiology of drought stress in two grapevine cultivars: Photosynthesis, antioxidant system, and osmotic regulation responses

Author:

Lin YiLing12,Liu Siyu12,Fang Xiang23,Ren Yanhua12,You Zhijie12,Xia Jiaxin12,Hakeem Abdul12,Yang Yuxian12,Wang Lingyu12,Fang Jinggui12,Shangguan Lingfei12ORCID

Affiliation:

1. Horticulture Department Nanjing Agricultural University Nanjing China

2. Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province Nanjing China

3. Agriculture and Horticulture Department Jiangsu Vocational College of Agriculture and Forestry Jurong China

Abstract

AbstractDrought stress impedes viticultural plant growth and development by modifying various metabolic pathways. However, the regulatory network response underlying drought stress is not yet clear. In this study, the leaves and roots of “Shine Muscat” (“SM,” Vitis labruscana × Vitis vinifera) and “Thompson Seedless” (“TS,” V. vinifera L. cv.) were subjected to drought stress to study the regulatory network used by drought stress. Morphophysiological results showed that the malondialdehyde content after 28 days of drought stress increased more significantly in “TS” than “SM.” Furthermore, the multiomics analysis studies showed that a total of 3036–6714 differentially expressed genes and 379–385 differentially abundant metabolites were identified in “SM” and “TS” grapevine cultivars under drought stress. Furthermore, the retained intron was the major form of differential alternative splicing event under drought stress. The photosynthesis pathway, antioxidant system, plant hormone signal transduction, and osmotic adjustment were the primary response systems in the two grapevine cultivars under drought stress. We have identified GRIK1, RFS2, and LKR/SDH as the hub genes in the coexpression network of drought stress. In addition, the difference in the accumulation of pheophorbide‐a reveals different drought resistance mechanisms in the two grapevine cultivars. Our study explained the difference in drought response between cultivars and tissues and identified drought stress‐responsive genes, which provides reference data for further understanding the regulatory network of drought tolerance in grapevine.

Funder

Natural Science Foundation of Jiangsu Province

Shandong Province Key Research and Development Program of China

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3