Affiliation:
1. Horticulture Department Nanjing Agricultural University Nanjing China
2. Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province Nanjing China
3. Agriculture and Horticulture Department Jiangsu Vocational College of Agriculture and Forestry Jurong China
Abstract
AbstractDrought stress impedes viticultural plant growth and development by modifying various metabolic pathways. However, the regulatory network response underlying drought stress is not yet clear. In this study, the leaves and roots of “Shine Muscat” (“SM,” Vitis labruscana × Vitis vinifera) and “Thompson Seedless” (“TS,” V. vinifera L. cv.) were subjected to drought stress to study the regulatory network used by drought stress. Morphophysiological results showed that the malondialdehyde content after 28 days of drought stress increased more significantly in “TS” than “SM.” Furthermore, the multiomics analysis studies showed that a total of 3036–6714 differentially expressed genes and 379–385 differentially abundant metabolites were identified in “SM” and “TS” grapevine cultivars under drought stress. Furthermore, the retained intron was the major form of differential alternative splicing event under drought stress. The photosynthesis pathway, antioxidant system, plant hormone signal transduction, and osmotic adjustment were the primary response systems in the two grapevine cultivars under drought stress. We have identified GRIK1, RFS2, and LKR/SDH as the hub genes in the coexpression network of drought stress. In addition, the difference in the accumulation of pheophorbide‐a reveals different drought resistance mechanisms in the two grapevine cultivars. Our study explained the difference in drought response between cultivars and tissues and identified drought stress‐responsive genes, which provides reference data for further understanding the regulatory network of drought tolerance in grapevine.
Funder
Natural Science Foundation of Jiangsu Province
Shandong Province Key Research and Development Program of China
Subject
Cell Biology,Plant Science,Genetics,General Medicine,Physiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献