Dynamic human, oceanographic, and ecological factors mediate transboundary fishery overlap across the Pacific high seas

Author:

Frawley Timothy H.12ORCID,Muhling Barbara13,Brodie Stephanie12,Blondin Hannah4,Welch Heather12,Arostegui Martin C.5ORCID,Bograd Steven J.12,Braun Camrin D.5,Cimino Megan A.12,Farchadi Nima67ORCID,Hazen Elliott L.124,Tommasi Desiree13,Jacox Michael128

Affiliation:

1. Institute of Marine Science University of California Santa Cruz Santa Cruz California USA

2. Environmental Research Division NOAA Southwest Fisheries Science Center Monterey California USA

3. Fisheries Resources Division NOAA Southwest Fisheries Science Center San Diego California USA

4. Hopkins Marine Station Stanford University Pacific Grove California USA

5. Biology Department Woods Hole Oceanographic Institution Woods Hole Massachusetts USA

6. San Diego State University San Diego California USA

7. Graduate Group in Ecology University of California Davis California USA

8. Physical Sciences Laboratory NOAA Earth System Research Laboratories Boulder Colorado USA

Abstract

AbstractThe management and conservation of tuna and other transboundary marine species have to date been limited by an incomplete understanding of the oceanographic, ecological and socioeconomic factors mediating fishery overlap and interactions, and how these factors vary across expansive, open ocean habitats. Despite advances in fisheries monitoring and biologging technology, few attempts have been made to conduct integrated ecological analyses at basin scales relevant to pelagic fisheries and the highly migratory species they target. Here, we use vessel tracking data, archival tags, observer records, and machine learning to examine inter‐ and intra‐annual variability in fisheries overlap (2013–2020) of five pelagic longline fishing fleets with North Pacific albacore tuna (Thunnus alalunga, Scombridae). Although progressive declines in catch and biomass have been observed over the past several decades, the North Pacific albacore is one of the only Pacific tuna stocks primarily targeted by pelagic longlines not currently listed as overfished or experiencing overfishing. We find that fishery overlap varies significantly across time and space as mediated by (1) differences in habitat preferences between juvenile and adult albacore; (2) variation of oceanographic features known to aggregate pelagic biomass; and (3) the different spatial niches targeted by shallow‐set and deep‐set longline fishing gear. These findings may have significant implications for stock assessment in this and other transboundary fishery systems, particularly the reliance on fishery‐dependent data to index abundance. Indeed, we argue that additional consideration of how overlap, catchability, and size selectivity parameters vary over time and space may be required to ensure the development of robust, equitable, and climate‐resilient harvest control rules.

Funder

National Oceanic and Atmospheric Administration

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3