The different response of Brassica napus genotypes to microspore embryogenesis induced by heat shock and trichostatin A is not determined by changes in cell wall structure and composition but by different stress tolerance

Author:

Camacho‐Fernández Carolina1ORCID,Corral‐Martínez Patricia1ORCID,Calabuig‐Serna Antonio1ORCID,Arjona‐Mudarra Paloma1,Sancho‐Oviedo Daniel1,Boutilier Kim2ORCID,Seguí‐Simarro Jose M.1ORCID

Affiliation:

1. Cell Biology Group COMAV, Universitat Politècnica de València Valencia Spain

2. Bioscience Wageningen University and Research Wageningen AA Netherlands

Abstract

AbstractDuring microspore embryogenesis, microspores are induced to develop into haploid embryos. In Brassica napus, microspore embryogenesis is induced by a heat shock (HS), which initially produces embryogenic structures with different cell wall architectures and compositions, and with different potentials to develop into embryos. The B. napus DH4079 and DH12075 genotypes have high and very low embryo yields, respectively. In DH12075, embryo yield is greatly increased by combining HS and the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). However, we show that HS + TSA inhibits embryogenesis in the highly embryogenic DH4079 line. To ascertain why TSA has such different effects in these lines, we treated DH4079 and DH12075 microspore cultures with TSA and compared the cell wall structure and composition of the different embryogenic structures in both lines, specifically the in situ levels and distribution of callose, cellulose, arabinogalactan proteins and high and low methyl‐esterified pectin. For both lines, HS + TSA led to the formation of cell walls unfavorable for embryogenesis progression, with reduced levels of arabinogalactan proteins, reduced cell adhesion of inner walls and altered pectin composition. Thus, TSA effects on cell walls cannot explain their different embryogenic response to TSA. We also applied TSA to DH4079 cultures at different times and concentrations before HS application, with no negative effects on embryogenic induction. These results indicate that DH4079 microspores are hypersensitive to combined TSA and HS treatments, and open up new hypotheses about the causes of such hypersensitivity.

Funder

European Commission

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3