Involvement of heparanase in the pathogenesis of acute pancreatitis: Implication of novel therapeutic approaches

Author:

Hamo‐Giladi Dalit B.1,Fokra Ahmad1,Sabo Edmond2,Kabala Aviva1,Minkov Irena3,Hamoud Shadi4,Hadad Salim5,Abassi Zaid16ORCID,Khamaysi Iyad7

Affiliation:

1. Department of Physiology The Ruth & Bruce Rappaport Faculty of Medicine Haifa Israel

2. Department of Pathology Carmel Hospital Haifa Israel

3. Department of Pathology Rambam Health Care Center Haifa Israel

4. Department of Internal Medicine E Rambam Health Care Center Haifa Israel

5. Department of Pharmacy Rambam Health Care Center Haifa Israel

6. Department of Laboratory Medicine Rambam Health Care Center Haifa Israel

7. Department of Gastroenterology Rambam Health Care Center Haifa Israel

Abstract

AbstractAcute pancreatitis (AP) is a common gastrointestinal disease with high morbidity and mortality rate. Unfortunately, neither the etiology nor the pathophysiology of AP are fully understood and causal treatment options are not available. Recently we demonstrated that heparanase (Hpa) is adversely involved in the pathogenesis of AP and inhibition of this enzyme ameliorates the manifestation of the disease. Moreover, a pioneer study demonstrated that Aspirin has partial inhibitory effect on Hpa. Another compound, which possesses a mild pancreato‐protective effect against AP, is Trehalose, a common disaccharide. We hypothesized that combination of Aspirin, Trehalose, PG545 (Pixatimod) and SST0001 (Roneparstat), specific inhibitors of Hpa, may exert pancreato‐protective effect better than each drug alone. Thus, the current study examines the pancreato‐protective effects of Aspirin, Trehalose, PG545 and SST0001 in experimental model of AP induced by cerulein in wild‐type (WT) and Hpa over‐expressing (Hpa‐Tg) mice. Cerulein‐induced AP in WT mice was associated with significant rises in the serum levels of lipase (X4) and amylase (X3) with enhancement of pancreatic edema index, inflammatory response, and autophagy. Responses to cerulein were all more profound in Hpa‐Tg mice versus WT mice, evident by X7 and X5 folds increase in lipase and amylase levels, respectively. Treatment with Aspirin or Trehalose alone and even more so in combination with PG545 or SST0001 were highly effective, restoring the serum level of lipase back to the basal level. Importantly, a novel newly synthesized compound termed Aspirlose effectively ameliorated the pathogenesis of AP as a single agent. Collectively, the results strongly indicate that targeting Hpa by using anti‐Hpa drug combinations constitute a novel therapy for this common orphan disease.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3