Perceived algorithmic fairness: An empirical study of transparency and anthropomorphism in algorithmic recruiting

Author:

Ochmann Jessica1,Michels Leonard1ORCID,Tiefenbeck Verena1,Maier Christian2,Laumer Sven1ORCID

Affiliation:

1. School of Business, Economics and Society, Institute of Information Systems, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Nuremberg Germany

2. Information Systems, Health and Society in the Digital Age, University of Bamberg Bamberg Germany

Abstract

AbstractDespite constant efforts of organisations to ensure a fair and transparent personnel selection process, hiring is still characterised by systematic inequality. The potential of algorithms to produce fair and objective decision outcomes has attracted the attention of academic scholars and practitioners as a conceivable alternative to human decision‐making. However, applicants do not necessarily consider an objective algorithm as fairer than a human decision maker. This study examines the conditions under which applicants perceive algorithms as fair and establishes a theoretical foundation of algorithmic fairness perceptions. We further propose and investigate transparency and anthropomorphism interventions as strategies to actively shape these fairness perceptions. In an online application scenario with eight experimental groups (N = 801), we analyse determinants for algorithmic fairness perceptions and the impact of the proposed interventions. Embedded in a stimulus‐organism‐response framework and drawing from organisational justice theory, our study reveals four justice dimensions (procedural, distributive, interpersonal, informational justice) that determine algorithmic fairness perceptions. The results further show that transparency and anthropomorphism interventions mainly affect dimensions of interpersonal and informational justice, highlighting the importance of algorithmic fairness perceptions as critical determinants for individual choices.

Publisher

Wiley

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3