Seemingly Unrelated Regression Estimation for VAR Models with Explosive Roots*

Author:

Chen Ye1,Li Jian2ORCID,Li Qiyuan3

Affiliation:

1. International School of Economics and Management Capital University of Economics and Business Beijing China

2. College of Economics and Management Huazhong Agricultural University Wuhan China

3. School of Economics Singapore Management University Singapore

Abstract

AbstractFor VAR models with common explosive root, the OLS estimator of the autoregressive coefficient matrix is inconsistent (refer to Nielsen, 2009 and Phillips and Magdalinos, 2013). Although Phillips & Magdalinos (2013) proposed using the future observations as the instrumental variable for removing the endogeneity from VAR models, type I error occurs when testing for a common explosive root from the distinct explosive roots before the implementation of IV estimation. Such error creates bias and variance in the estimate and further causes incorrect inference in the structural analysis such as forecast error decomposition (FEVD). Hence, we propose using of seemingly unrelated regression (SUR) estimation for VAR models with explosive roots. Our SUR estimator is consistent in the case of both distinct explosive roots and common explosive root. We also consider models with drift in the system for generalization. Simulations show that the SUR estimate performs better than OLS and IV estimate in the case of both a common explosive root and distinct explosive roots case. In structural FEVD analysis, simulations show that SUR yields a different result from OLS and IV. We demonstrate the use of SUR in FEVD for agricultural commodity markets between 3 July 2010, and 29 January 2011.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Social Sciences (miscellaneous),Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3