Global Demand and Supply Sentiment: Evidence From Earnings Calls*

Author:

Ulrich Ruch Franz1,Taskin Temel2

Affiliation:

1. World Bank Washington DC USA

2. Bank of Canada Ottawa Ontario Canada

Abstract

AbstractThis paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Social Sciences (miscellaneous),Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3