Exploring the molecular mechanisms of increased intensity of pyrethroid resistance in Central African population of a major malaria vector Anopheles coluzzii

Author:

Fadel Amen N.12,Ibrahim Sulaiman S.134ORCID,Sandeu Maurice M.15,Tatsinkou Claudine Grâce Maffo1,Menze Benjamin D.1,Irving Helen4,Hearn Jack6,Nagi Sanjay C.4,Weedall Gareth D.7,Terence Ebai1,Tchapga Williams1,Wanji Samuel2,Wondji Charles S.14

Affiliation:

1. Center for Research in Infectious Diseases (CRID) Yaoundé Cameroon

2. Department of Microbiology and Parasitology University of Buea Buea Cameroon

3. Department of Biochemistry Bayero University Kano Nigeria

4. Vector Biology Department Liverpool School of Tropical Medicine (LSTM) Liverpool UK

5. Department of Microbiology and Infectious Diseases School of Veterinary Medicine and Sciences University of Ngaoundéré Ngaoundéré Cameroon

6. Centre of Epidemiology and Planetary Health North Faculty Veterinary & Animal Science Scotland's Rural College Inverness UK

7. School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK

Abstract

AbstractMolecular mechanisms driving the escalation of pyrethroid resistance in the major malaria mosquitoes of Central Africa remain largely uncharacterized, hindering effective management strategies. Here, resistance intensity and the molecular mechanisms driving it were investigated in a population of Anopheles coluzzii from northern Cameroon. High levels of pyrethroid and organochloride resistance were observed in An. coluzzii population, with no mortality for 1× permethrin; only 11% and 33% mortalities for 5× and 10× permethrin diagnostic concentrations, and <2% mortalities for deltamethrin and DDT, respectively. Moderate bendiocarb resistance (88% mortality) and full susceptibility to malathion were observed. Synergist bioassays with piperonyl butoxide recovered permethrin susceptibility, with mortalities increasing to 53.39%, and 87.30% for 5× and 10× permethrin, respectively, implicating P450 monooxygenases. Synergist bioassays with diethyl maleate (DEM) recovered permethrin and DDT susceptibilities (mortalities increasing to 34.75% and 14.88%, respectively), implicating glutathione S‐transferases. RNA‐seq‐based genome‐wide transcriptional analyses supported by quantitative PCR identified glutathione S‐transferase, GSTe2 (RNA‐seqFC = 2.93 and qRT‐PCRFC = 8.4, p < 0.0043) and CYP450, CYP6Z2 (RNA‐seqFC = 2.39 and qRT‐PCRFC = 11.7, p < 0.0177) as the most overexpressed detoxification genes in the pyrethroid‐resistant mosquitoes, compared to mosquitoes of the susceptible Ngousso colony. Other overexpressed genes include P450s, CYP6M2 (FC = 1.68, p < 0.0114), CYP4G16 (FC = 2.02, p < 0.0005), and CYP4G17 (FC = 1.86, p < 0.0276). While high frequency of the 1014F kdr mutation (50%) and low frequencies of 1014S (6.61%) and 1575Y (10.29%) were observed, no ace‐1 mutation was detected in bendiocarb‐resistant populations, suggesting the preeminent role of metabolic mechanism. Overexpression of metabolic resistance genes (including GSTe2 and CYP6Z2 known to confer resistance to multiple insecticides) in An. coluzzii from the Sudan Savannah of Cameroon highlights the need for alternative management strategies to reduce malaria burden in northern Cameroon.

Funder

Wellcome Trust

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3