Interindividual variation among Culex pipiens larvae in terms of thermal response

Author:

Sakaci Zafer12,Talay Sengul1,Erguler Kamil3,Korkmaz Adil4,Sirin Deniz1,Er Aylin2ORCID,Alten Bulent5ORCID,Kar Sirri1ORCID

Affiliation:

1. Department of Biology Tekirdag Namik Kemal University Tekirdag Turkey

2. Department of Biology Balikesir University Balikesir Turkey

3. Environmental Predictions Department Climate and Atmosphere Research Centre Nicosia Cyprus

4. Department of Econometrics, Faculty of Economics and Administrative Sciences Akdeniz University Antalya Turkey

5. Faculty of Sciences, Department of Biology, Division of Ecology Hacettepe University Ankara Turkey

Abstract

AbstractThis study aims to determine the phenological characteristics of thermal responses in the larvae of a Culex pipiens complex field population at the individual level under the influence of thermal regime of its habitat. The analysis is based on a structured population model quantifying the thermal responses of development time and survival under variable conditions and characterising the variety between the larvae (interindividual variety). During the study performed in Turkish Thrace on a monthly basis between May 2021 and June 2022, a total of 3744 larvae were reared as peer larval cohorts and 2330 larvae as siblings in artificial containers to be fully exposed to the natural thermal condition that was recorded hourly. The development process of larvae was monitored daily from egg to adult. As a result, a total of 4788 adult mosquitoes emerged, with a development period ranging from 8 to 52 days in the females and 7 to 50 days in the males, and the survival rate was found to range from 0% to 100%. Both parameters varied by month and individuals, and the variations manifested itself, particularly in the colder periods. The results indicate that the variation between the individuals in terms of thermal response in the larvae of C. pipiens, along with the thermal acclimation ability, appears to be fate determinant in resisting fluctuating thermal regimes, surviving in concurrent climate change and adapting to new conditions with modifications in the seasonal phenology, such as maintaining reproductive dynamics throughout the winter thanks to global warming.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3