Marine heatwave‐driven mass mortality and microbial community reorganisation in an ecologically important temperate sponge

Author:

Bell James J.1ORCID,Micaroni Valerio12ORCID,Strano Francesca12ORCID,Ryan Ken G.1ORCID,Mitchell Katherine3,Mitchell Paul3,Wilkinson Shaun4ORCID,Thomas Torsten5ORCID,Bachtiar Ramadian1ORCID,Smith Robert O.6ORCID

Affiliation:

1. School of Biological Sciences Victoria University of Wellington Wellington New Zealand

2. Department of Biological and Environmental Sciences and Technologies University of Salento Lecce Italy

3. Fiordland Charters Ltd Te Anau New Zealand

4. Wilderlab Wellington New Zealand

5. Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia

6. Department of Marine Science University of Otago Dunedin New Zealand

Abstract

AbstractMarine heatwaves (MHWs) are increasing in frequency, duration and intensity, disrupting global marine ecosystems. While most reported impacts have been in tropical areas, New Zealand experienced its strongest and longest MHW in 2022, profoundly affecting marine sponges. Sponges are vital to rocky benthic marine communities, with their abundance influencing ecosystem functioning. This study examines the impact of this MHW on the photosynthetic sponge Cymbastella lamellata in Fiordland, New Zealand. We describe the extent, physiological responses, mortality, microbial community changes and ecological impact of this MHW on C. lamellata. The Fiordland MHW reached a maximum temperature of 4.4°C above average, lasting for 259 days. Bleaching occurred in >90% of the C. lamellata Fiordland population. The population size exceeded 66 million from 5 to 25 m, making this the largest bleaching event of its kind ever recorded. We identified the photosynthetic symbiont as a diatom, and bleached sponges had reduced photosynthetic efficiency. Post‐MHW surveys in 2023 found that over 50% of sponges at sampling sites had died but that the remaining sponges had mostly recovered from earlier bleaching. Using a simulated MHW experiment, we found that temperature stress was a driver of necrosis rather than bleaching, despite necrosis only rarely being observed in the field (<2% of sponges). This suggests that bleaching may not be the cause of the mortality directly. We also identified a microbial community shift in surviving sponges, which we propose represents a microbial‐mediated adaptive response to MHWs. We also found that C. lamellata are key contributors of dissolved organic carbon to the water column, with their loss likely impacting ecosystem function. We demonstrate the potential for MHWs to disrupt key marine phyla in temperate regions, highlighting how susceptible temperate sponges globally might be to MHWs.

Funder

Victoria University of Wellington

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3