Effect of combining aminomethacrylate and fluoride against erosive and abrasive challenges on enamel and dentin

Author:

Augusto Marina Gullo12ORCID,da Silva Luis Felipe Oliveira1ORCID,Lotto Giovanna1ORCID,Santos Tamires Maria de Andrade1ORCID,Aoki Idalina Vieira3ORCID,Torres Carlos Rocha Gomes1ORCID,Scaramucci Tais4ORCID,Borges Alessandra Bühler1ORCID

Affiliation:

1. Department of Restorative Dentistry Institute of Science and Technology São Paulo State University – UNESP São José dos Campos São Paulo Brazil

2. School of Dentistry Centro Universitário de Cascavel – UNIVEL Cascavel Paraná Brazil

3. Department of Chemical Engineering Polytechnic School University of São Paulo – USP São Paulo Brazil

4. Department of Restorative Dentistry School of Dentistry University of São Paulo – USP São Paulo Brazil

Abstract

AbstractThis study evaluated the effect of solutions containing aminomethacrylate copolymer (AA) and sodium fluoride (F; 225 ppm F) or fluoride plus stannous chloride (FSn; 225 ppm F, 800 ppm Sn2+) against enamel and dentin erosion/abrasion. Solutions F, FSn, AA, F+AA, FSn+AA, and deionized water as negative control were tested. Bovine enamel and dentin specimens (n = 13/solution/substrate) underwent a set of erosion‐abrasion cycles (0.3% citric acid [5 min, 4×/day], human saliva [1 h, 4×/day], brushing [15 s, 2×/day], and treatments [2 min, 2×/day]) for each of five days. Initial enamel erosion was evaluated using Knoop microhardness after the first and second acid challenge on day 1, and surface loss with profilometry after day 5. KOH‐soluble fluoride was assessed. Data were analyzed with ANOVA/Tukey tests. The combination of fluoride and AA resulted in higher protection against enamel erosion, whereas this was not the case for the combination of AA and FSn. All treatments protected against enamel and dentin loss. The lowest surface loss values were observed with F+AA and FSn+AA. The polymer did not significantly influence the KOH‐soluble fluoride formation on enamel/dentin specimens. The aminomethacrylate copolymer effectively enhanced the efficacy of sodium fluoride against initial erosion and improved the control of enamel and dentin wear of F and FSn solutions.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3