Homeostasis of flavonoids and triterpenoids most likely modulates starch metabolism for pollen tube penetration in rice

Author:

Wu Hua‐Mao123ORCID,Xie Dong‐Jiang13,Jia Peng‐Fei13,Tang Zuo‐Shun13,Shi Dong‐Qiao13,Shui Guang‐Hou13,Wang Guo‐Dong34ORCID,Yang Wei‐Cai13ORCID

Affiliation:

1. State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China

2. State Key Laboratory of Vegetable Biobreeding Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing China

3. College of Advanced Agricultural Sciences University of Chinese Academy of Sciences Beijing China

4. State Key Laboratory of Plant Genomics Institute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China

Abstract

SummaryIn angiosperms, the timely delivery of sperm cell nuclei by pollen tube (PT) to the ovule is vital for double fertilization. Penetration of PT into maternal stigma tissue is a critical step for sperm cell nuclei delivery, yet little is known about the process. Here, a male‐specific and sporophytic mutant xt6, where PTs are able to germinate but unable to penetrate the stigma tissue, is reported in Oryza sativa. Through genetic study, the causative gene was identified as Chalcone synthase (OsCHS1), encoding the first enzyme in flavonoid biosynthesis. Indeed, flavonols were undetected in mutant pollen grains and PTs, indicating that the mutation abolished flavonoid biosynthesis. Nevertheless, the phenotype cannot be rescued by exogenous application of quercetin and kaempferol as reported in maize and petunia, suggesting a different mechanism exists in rice. Further analysis showed that loss of OsCHS1 function disrupted the homeostasis of flavonoid and triterpenoid metabolism and led to the accumulation of triterpenoid, which inhibits significantly α‐amylase activity, amyloplast hydrolysis and monosaccharide content in xt6, these ultimately impaired tricarboxylic acid (TCA) cycle, reduced ATP content and lowered the turgor pressure as well. Our findings reveal a new mechanism that OsCHS1 modulates starch hydrolysis and glycometabolism through modulating the metabolic homeostasis of flavonoids and triterpenoids which affects α‐amylase activity to maintain PT penetration in rice, which contributes to a better understanding of the function of CHS1 in crop fertility and breeding.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3