Disentangling the drivers of decadal body size decline in an insect population

Author:

Botsch Jamieson C.1ORCID,Zaveri Aayush N.1,Nell Lucas A.1,McCormick Amanda R.1,Book K. Riley1,Phillips Joseph S.1,Einarsson Árni23,Ives Anthony R.1

Affiliation:

1. Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin USA

2. Faculty of Life and Environmental Sciences University of Iceland Reykjavik Iceland

3. Mývatn Research Station Skútustaðir Iceland

Abstract

AbstractWhile climate warming is widely predicted to reduce body size of ectotherms, evidence for this trend is mixed. Body size depends not only on temperature but also on other factors, such as food quality and intraspecific competition. Because temperature trends or other long‐term environmental factors may affect population size and food sources, attributing trends in average body size to temperature requires the separation of potentially confounding effects. We evaluated trends in the body size of the midge Tanytarsus gracilentus and potential drivers (water temperature, population size, and food quality) between 1977 and 2015 at Lake Mývatn, Iceland. Although temperatures increased at Mývatn over this period, there was only a slight (non‐significant) decrease in midge adult body size, contrary to theoretical expectations. Using a state‐space model including multiple predictors, body size was negatively associated with both water temperature and midge population abundance, and it was positively associated with 13C enrichment of midges (an indicator of favorable food conditions). The magnitude of these effects were similar, such that simultaneous changes in temperature, abundance, and carbon stable isotopic signature could counteract each other in the long‐term body size trend. Our results illustrate how multiple factors, all of which could be influenced by global change, interact to affect average ectotherm body size.

Funder

Division of Environmental Biology

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3