Affiliation:
1. Laboratory of Zoology, Department of Biological Chemistry, Programa de Pós‐Graduação em Diversidade Biológica e Recursos Naturais Regional University of Cariri (URCA) Crato Brazil
2. Diversity, Ichnology and Osteohistology Laboratory (DINOlab), Department of Geology Federal University of Rio Grande Do Norte (URFN) Natal Brazil
3. Mention Bassins Sédimentaires, Evolution, Conservation University of Antananarivo (UA) Antananarivo Madagascar
Abstract
AbstractRecent evidence suggests that the invasive air sac system evolved at least three times independently in avemetatarsalians: in pterosaurs, sauropodomorphs and theropods. Data from sauropodomorphs showed that the pneumatic architecture in vertebrae first developed in camellate‐like trabeculae in the Triassic, later in camerate systems in Jurassic neosauropods, and finally camellate tissue in Cretaceous titanosaurs. This evolutionary trajectory has support from a considerable sampling of sauropodomorph taxa. However, the evolution of pneumatic bone tissues in Theropoda is less understood. We analyzed the computed tomography of Majungasaurus and Rahonavis, using densitometry rendering to differentiate the microarchitecture along the presacral axial skeleton of late Ceratosaurians and early Paravians. We also compared these results with scans of other theropod clades. Our analysis revealed an increase in pneumatic complexity in early paravians compared to the ceratosaurians. Majungasaurus presents some apneumatic neural spines, a condition also observed in Allosaurus. Majungasaurus also features some apneumatic centra despite the presence of lateral pneumatic fossae. This raises caution when evaluating PSP solely based on external morphology. We also found evidence of distinct patterns of PSP in maniraptorans. Considering that Majungasaurus, a late abelisaurid, inherited from their ceratosaurian ancestors, some apneumatic elements such as the neural spine and some centra, Rahonavis, an early paravian, took a different trajectory toward the full pneumatization of the axial skeleton. This characteristic provided paravians an advantage in gliding and flying. Also, unlike Sauropoda, pneumaticity in Theropoda apparently developed by increasing chamber volumes toward paravians. Similar studies on early Theropoda are needed to elucidate their condition and better describe the evolutionary trajectory of different groups.
Funder
Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico