Host phylogeny and ecological associations best explain Wolbachia host shifts in scale insects

Author:

Sanaei Ehsan1ORCID,Albery Gregory F.2,Yeoh Yun Kit3,Lin Yen‐Po4,Cook Lyn G.1,Engelstädter Jan1

Affiliation:

1. School of Biological Sciences The University of Queensland Brisbane Queensland Australia

2. Department of Biology Georgetown University Washington DC USA

3. Department of Microbiology The Chinese University of Hong Kong Hong Kong China

4. Department of Plant Medicine, College of Agriculture National Chiayi University Chiayi City Taiwan

Abstract

AbstractWolbachia are among the most prevalent and widespread endosymbiotic bacteria on Earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host‐shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host‐shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well suited to studying host shifts. Using Illumina multitarget amplicon sequencing of Wolbachia‐infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a generalized additive mixed model to our data to estimate the influence of host phylogeny and the geographical distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop‐off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host‐shifting.

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3