Large effective population size masks population genetic structure in Hirondellea amphipods within the deepest marine ecosystem, the Mariana Trench

Author:

Piertney Stuart B.1ORCID,Wenzel Marius1,Jamieson Alan J.2

Affiliation:

1. School of Biological Sciences University of Aberdeen Aberdeen UK

2. Minderoo‐UWA Deep‐Sea Research Centre, School of Biological Sciences and Oceans Institute The University of Western Australia Perth Western Australia Australia

Abstract

AbstractThe examination of genetic structure in the deep‐ocean hadal zone has focused on divergence between tectonic trenches to understand how environment and geography may drive species divergence and promote endemism. There has been little attempt to examine localized genetic structure within trenches, partly because of logistical challenges associated with sampling at an appropriate scale, and the large effective population sizes of species that can be sampled adequately may mask underlying genetic structure. Here we examine genetic structure in the superabundant amphipod Hirondellea gigas in the Mariana Trench at depths of 8126–10,545 m. RAD sequencing was used to identify 3182 loci containing 43,408 single nucleotide polymorphisms (SNPs) across individuals after stringent pruning of loci to prevent paralogous multicopy genomic regions being erroneously merged. Principal components analysis of SNP genotypes resolved no genetic structure between sampling locations, consistent with a signature of panmixia. However, discriminant analysis of principal components identified divergence between all sites driven by 301 outlier SNPs in 169 loci and significantly associated with latitude and depth. Functional annotation of loci identified differences between singleton loci used in analysis and paralogous loci pruned from the data set and also between outlier and nonoutlier loci, all consistent with hypotheses explaining the role of transposable elements driving genome dynamics. This study challenges the traditional perspective that highly abundant amphipods within a trench form a single panmictic population. We discuss the findings in relation to eco‐evolutionary and ontogenetic processes operating in the deep sea, and highlight key challenges associated with population genetic analysis in nonmodel systems with inherent large effective population sizes and genomes.

Funder

Leverhulme Trust

Natural Environment Research Council

Schmidt Ocean Institute

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Reference97 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3