Patterns of variation in fleshy diaspore size and abundance from Late Triassic–Oligocene

Author:

Naware Duhita1ORCID,Benson Roger2

Affiliation:

1. Department of Earth Sciences University of Oxford South Parks Road Oxford OX1 3AN UK

2. American Museum of Natural History 200 Central Park West New York NY 10024‐5102 USA

Abstract

ABSTRACTVertebrate‐mediated seed dispersal is a common attribute of many living plants, and variation in the size and abundance of fleshy diaspores is influenced by regional climate and by the nature of vertebrate seed dispersers among present‐day floras. However, potential drivers of large‐scale variation in the abundance and size distributions of fleshy diaspores through geological time, and the importance of geographic variation, are incompletely known. This knowledge gap is important because fleshy diaspores are a key mechanism of energy transfer from photosynthesis to animals and may in part explain the diversification of major groups within birds and mammals. Various hypotheses have been proposed to explain variation in the abundance and size distribution of fleshy diaspores through time, including plant–frugivore co‐evolution, angiosperm diversification, and changes in vegetational structure and climate. We present a new data set of more than 800 georeferenced fossil diaspore occurrences spanning the Triassic–Oligocene, across low to mid‐ to high palaeolatitudes. We use this to quantify patterns of long‐term change in fleshy diaspores, examining the timing and geographical context of important shifts as a test of the potential evolutionary and climatic explanations. We find that the fleshy fruit sizes of angiosperms increased for much of the Cretaceous, during the early diversification of angiosperms from herbaceous ancestors with small fruits. Nevertheless, this did not cause a substantial net change in the fleshy diaspore size distributions across seed plants, because gymnosperms had achieved a similar size distribution by at least the Late Triassic. Furthermore, gymnosperm‐dominated Mesozoic ecosystems were mostly open, and harboured low proportions of specialised frugivores until the latest Cretaceous, suggesting that changes in vegetation structure and plant–frugivore co‐evolution were probably not important drivers of fleshy diaspore size distributions over long timescales. Instead, fleshy diaspore size distributions may be largely constrained by physical or life‐history limits that are shared among groups and diversify as a plant group expands into different growth forms/sizes, habitats, and climate regimes. Mesozoic gymnosperm floras had a low abundance of fleshy diaspores (<50% fleshy diaspore taxa), that was surpassed by some low‐latitude angiosperm floras in the Cretaceous. Eocene angiosperm floras show a mid‐ to high latitude peak in fleshy fruit abundance, with very high proportions of fleshy fruits that even exceed those seen at low latitudes both in the Eocene and today. Mid‐ to high latitude proportions of fleshy fruits declined substantially over the Eocene–Oligocene transition, resulting in a shift to more modern‐like geographic distributions with the highest proportion of fleshy fruits occurring in low‐latitude tropical assemblages. This shift was coincident with global cooling and the onset of Southern Hemisphere glaciation, suggesting that rapid cooling at mid‐ and high latitudes caused a decrease in availability of the climate conditions most favourable for fleshy fruits in angiosperms. Future research could be focused on examining the environmental niches of modern fleshy fruits, and the potential effects of climate change on fleshy fruit and frugivore diversity.

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference453 articles.

1. New data on composition and age of Malomikhailovka flora from the Upper Cretaceous of the Amur River lower courses;Akhmetiev M.;Stratigraphy and Geological Correlation,1998

2. Icacinaceae from the Eocene of western North America

3. Occurrence of urticaceous fruit from the Deccan Intertrappean beds of Mohgaon Kalan, Chhindwara district, Madhya Pradesh;Ambwani K.;Geophytology,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3