Affiliation:
1. Erguna Forest‐Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology, Chinese Academy of Sciences Shenyang China
2. Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan Province Hainan University Haikou China
3. Lancaster Environment Centre Lancaster University Lancaster UK
4. Hainan Ecological Environment Monitoring Center Haikou China
5. State Key Laboratory of Vegetation of Environmental Change Institute of Botany, Chinese Academy of Sciences Beijing China
Abstract
AbstractIdentifying the thresholds for the positive responses of total net primary productivity (NPP) to nitrogen (N) enrichment is an essential prerequisite for predicting the benefits of N deposition on ecosystem carbon sequestration. However, the responses of below‐ground NPP (BNPP) to N enrichment are unknown in many ecosystems, which limits our ability to understand the carbon cycling under the scenario of increasing N availability. We examined the changes in above‐ground NPP (ANPP), BNPP, and NPP of a temperate meadow steppe across a wide‐ranging N addition gradient (0, 2, 5, 10, 20, and 50 g N m−2 year−1) during 5 years. Both ANPP and NPP increased nonlinearly with N addition rates. The N saturation threshold for ANPP (TA) and NPP (TN) was at the rate of 13.11 and 6.70 g N m−2 year−1, respectively. BNPP decreased with increasing N addition when N addition rates ˃5 g N m−2 year−1, resulting in much lower TN than TA. Soil N enrichment played a key role in driving the negative impacts of high N addition rates on BNPP, and consequently on the earlier occurrence of N saturation threshold for NPP. Our results highlight the negative effects of soil N enrichment on NPP in natural grasslands super‐saturated with N. Furthermore, by considering ANPP and BNPP simultaneously, our results indicate that previous findings from above‐ground might have over‐estimated the positive effects of N deposition on primary productivity.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
Subject
General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献