Development of machine learning models to predict posterior capsule rupture based on the EUREQUO registry

Author:

Triepels Ron J. M. A.1ORCID,Segers Maartje H. M.2ORCID,Rosen Paul3,Nuijts Rudy M. M. A.2,van den Biggelaar Frank J. H. M.2,Henry Ype P.4,Stenevi Ulf5,Tassignon Marie‐José6,Young David7,Behndig Anders8ORCID,Lundström Mats9ORCID,Dickman Mor M.2ORCID

Affiliation:

1. Department of Data Analytics and Digitalisation Maastricht University Maastricht the Netherlands

2. University Eye Clinic Maastricht University Medical Center+ Maastricht the Netherlands

3. Department of Ophthalmology Oxford Eye Hospital Oxford UK

4. Department of Ophthalmology Amsterdam UMC Amsterdam the Netherlands

5. Department of Ophthalmology Sahlgrenska University Hospital Göteborg Sweden

6. Department of Ophthalmology Antwerp University Hospital Edegem Belgium

7. Department of Mathematics and Statistics University of Strathclyde Glasgow UK

8. Department of Clinical Sciences, Ophthalmology Umeå University Umeå Sweden

9. Department of Clinical Sciences, Ophthalmology Lund University Lund Sweden

Abstract

AbstractPurposeTo evaluate the performance of different probabilistic classifiers to predict posterior capsule rupture (PCR) prior to cataract surgery.MethodsThree probabilistic classifiers were constructed to estimate the probability of PCR: a Bayesian network (BN), logistic regression (LR) model, and multi‐layer perceptron (MLP) network. The classifiers were trained on a sample of 2 853 376 surgeries reported to the European Registry of Quality Outcomes for Cataract and Refractive Surgery (EUREQUO) between 2008 and 2018. The performance of the classifiers was evaluated based on the area under the precision‐recall curve (AUPRC) and compared to existing scoring models in the literature. Furthermore, direct risk factors for PCR were identified by analysing the independence structure of the BN.ResultsThe MLP network predicted PCR overall the best (AUPRC 13.1 ± 0.41%), followed by the BN (AUPRC 8.05 ± 0.39%) and the LR model (AUPRC 7.31 ± 0.15%). Direct risk factors for PCR include preoperative best‐corrected visual acuity (BCVA), year of surgery, operation type, anaesthesia, target refraction, other ocular comorbidities, white cataract, and corneal opacities.ConclusionsOur results suggest that the MLP network performs better than existing scoring models in the literature, despite a relatively low precision at high recall. Consequently, implementing the MLP network in clinical practice can potentially decrease the PCR rate.

Publisher

Wiley

Subject

Ophthalmology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3