Affiliation:
1. University of Houston College of Optometry Houston Texas USA
Abstract
AbstractPurposeLow‐level red light (LLRL) therapy has recently emerged as a myopia treatment in children, with several studies reporting significant reduction in axial elongation and myopia progression. The goal of this study was to characterise the output and determine the thermal and photochemical maximum permissible exposure (MPE) of LLRL devices for myopia control.MethodsTwo LLRL devices, a Sky‐n1201a and a Future Vision, were examined. Optical power measurements were made using an integrating sphere radiometer through a 7‐mm diameter aperture, in accordance with ANSI Z136.1‐2014, sections 3.2.3–3.2.4. Retinal spot sizes of the devices were obtained using a model eye and high‐resolution beam profiler. Corneal irradiance, retinal irradiance and MPE were calculated for an eye positioned at the oculars of each device.ResultsBoth devices were confirmed to be Class 1 laser products. Findings showed that the Sky‐n1201a delivers laser light as a point source with a 654‐nm wavelength, 0.2 mW power (Ø 7 mm aperture, 10‐cm distance), 1.17 mW/cm2 corneal irradiance and 7.2 W/cm2 retinal irradiance (Ø 2 mm pupil). The MPE for photochemical damage is 0.55–7.0 s for 2–7 mm pupils and for thermal damage is 0.41–10 s for 4.25–7 mm pupils. Future Vision delivers the laser as an extended source subtending 0.75 × 0.325°. It has a 652‐nm wavelength, 0.06 mW power (Ø 7 mm aperture, 10 cm distance), 0.624 mW/cm2 corneal irradiance and 0.08 W/cm2 retinal irradiance (Ø 2 mm pupil). MPE for photochemical damage is 50–625 s for 2–7 mm pupils.DiscussionFor both of the LLRL devices evaluated here, 3 min of continuous viewing approached or surpassed the MPE, putting the retina at risk of photochemical and thermal damage. Clinicians should be cautious with the use of LLRL therapy for myopia in children until safety standards can be confirmed.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献