Nanoarchitecture of CaV2.1 channels and GABAB receptors in the mouse hippocampus: Impact of APP/PS1 pathology

Author:

Martín‐Belmonte Alejandro123ORCID,Aguado Carolina14,Alfaro‐Ruiz Rocío14,Kulik Akos5,de la Ossa Luis6,Moreno‐Martínez Ana Esther14,Alberquilla Samuel7,García‐Carracedo Lucía7,Fernández Miriam14,Fajardo‐Serrano Ana1,Aso Ester23,Shigemoto Ryuichi8,Martín Eduardo D.7,Fukazawa Yugo910,Ciruela Francisco23,Luján Rafael14ORCID

Affiliation:

1. Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM) Universidad Castilla‐La Mancha Albacete Spain

2. Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences University of Barcelona Barcelona Spain

3. Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge Barcelona Spain

4. Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM) Albacete Spain

5. Institute for Physiology II, Medical Faculty University of Freiburg Freiburg Germany

6. Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática Universidad de Castilla‐La Mancha Albacete Spain

7. Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid Spain

8. Institute of Science and Technology Austria (ISTA) Klosterneuburg Austria

9. Division of Brain Structure and Function, Faculty of Medical Science University of Fukui Fukui Japan

10. Life Science Innovation Center University of Fukui Fukui Japan

Abstract

AbstractVoltage‐gated CaV2.1 (P/Q‐type) Ca2+ channels play a crucial role in regulating neurotransmitter release, thus contributing to synaptic plasticity and to processes such as learning and memory. Despite their recognized importance in neural function, there is limited information on their potential involvement in neurodegenerative conditions such as Alzheimer's disease (AD). Here, we aimed to explore the impact of AD pathology on the density and nanoscale compartmentalization of CaV2.1 channels in the hippocampus in association with GABAB receptors. Histoblotting experiments showed that the density of CaV2.1 channel was significantly reduced in the hippocampus of APP/PS1 mice in a laminar‐dependent manner. CaV2.1 channel was enriched in the active zone of the axon terminals and was present at a very low density over the surface of dendritic tree of the CA1 pyramidal cells, as shown by quantitative SDS‐digested freeze‐fracture replica labelling (SDS‐FRL). In APP/PS1 mice, the density of CaV2.1 channel in the active zone was significantly reduced in the strata radiatum and lacunosum‐moleculare, while it remained unaltered in the stratum oriens. The decline in Cav2.1 channel density was found to be associated with a corresponding impairment in the GABAergic synaptic function, as evidenced by electrophysiological experiments carried out in the hippocampus of APP/PS1 mice. Remarkably, double SDS‐FRL showed a co‐clustering of CaV2.1 channel and GABAB1 receptor in nanodomains (~40–50 nm) in wild type mice, while in APP/PS1 mice this nanoarchitecture was absent. Together, these findings suggest that the AD pathology‐induced reduction in CaV2.1 channel density and CaV2.1‐GABAB1 de‐clustering may play a role in the synaptic transmission alterations shown in the AD hippocampus. Therefore, uncovering these layer‐dependent changes in P/Q calcium currents associated with AD pathology can benefit the development of future strategies for AD management.

Funder

Junta de Comunidades de Castilla-La Mancha

Ministerio de Economía y Competitividad

University of Fukui

Universidad de Castilla-La Mancha

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference84 articles.

1. Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease;Llorens‐Martín M;Front Neuroanat,2014

2. Calcium Dyshomeostasis in Alzheimer's disease pathogenesis;Cascella R;Int J Mol Sci,2021

3. Elevating the levels of calcium ions exacerbate Alzheimer's disease via inducing the production and aggregation of β‐amyloid protein and phosphorylated tau;Guan PP;Int J Mol Sci,2021

4. Ca2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles;Wang X;FASEB J,2019

5. Molecular mechanisms of calcium‐dependent excitotoxicity;Sattler R;J Mol Med (Berl),2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3