The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: A deep learning approach

Author:

Montolío Alberto12ORCID,Cegoñino José12ORCID,Garcia‐Martin Elena34ORCID,Pérez del Palomar Amaya12ORCID

Affiliation:

1. Biomaterials Group, Aragon Institute of Engineering Research (I3A) University of Zaragoza Zaragoza Spain

2. Mechanical Engineering Department University of Zaragoza Zaragoza Spain

3. Ophthalmology Department Miguel Servet University Hospital Zaragoza Spain

4. GIMSO Research and Innovation Group Aragon Institute for Health Research (IIS Aragon) Zaragoza Spain

Abstract

AbstractPurposeThe macular ganglion cell layer (mGCL) is a strong potential biomarker of axonal degeneration in multiple sclerosis (MS). For this reason, this study aims to develop a computer‐aided method to facilitate diagnosis and prognosis in MS.MethodsThis paper combines a cross‐sectional study of 72 MS patients and 30 healthy control subjects for diagnosis and a 10‐year longitudinal study of the same MS patients for the prediction of disability progression, during which the mGCL was measured using optical coherence tomography (OCT). Deep neural networks were used as an automatic classifier.ResultsFor MS diagnosis, greatest accuracy (90.3%) was achieved using 17 features as inputs. The neural network architecture comprised the input layer, two hidden layers and the output layer with softmax activation. For the prediction of disability progression 8 years later, accuracy of 81.9% was achieved with a neural network comprising two hidden layers and 400 epochs.ConclusionWe present evidence that by applying deep learning techniques to clinical and mGCL thickness data it is possible to identify MS and predict the course of the disease. This approach potentially constitutes a non‐invasive, low‐cost, easy‐to‐implement and effective method.

Funder

Instituto de Salud Carlos III

Ministerio de Ciencia, Innovación y Universidades

Ministerio de Economía y Competitividad

Publisher

Wiley

Subject

Ophthalmology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3