Affiliation:
1. Key Laboratory of Forest Protection of Sichuan Province, College of Forestry Sichuan Agricultural University Chengdu China
2. National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province Chengdu China
3. College of Chemistry and Life Sciences Chengdu Normal University Chengdu China
Abstract
AbstractPestalotiopsis guepinii is a pathogenic fungus that causes grey blight on Camellia pitardii. In this study, we investigated the enzyme activity and kinetics of these cell‐wall‐degrading enzymes (CWDEs) produced by Pestalotiopsis guepinii in both C. pitardii leaves and culture medium. Our enzyme activity experiments revealed that the activities of xylanase, pectin methyl‐galacturonase (PMG), β‐1,4‐endoglucanase (Cx), and β‐glucosidase were high in both C. pitardii leaves and culture medium. These enzymes played a significant role in the pathogenic process. However, the activity of laccase was found to be very low and had a minor impact on the pathogenic process. Furthermore, our enzyme dynamics experiments demonstrated that the optimal reaction temperature for PMG and Cx was 50°C, while for β‐glucosidase and xylanase, it was 60°C. The optimal reaction pH for Cx, β‐glucosidase, and xylanase was 5.0, whereas for PMG, it ranged from 5.0 to 6.0. This indicates that these four enzymes prefer acidic conditions. Moreover, we observed that the activities of Cx, PMG, and xylanase decreased with increasing reaction time. On the other hand, the activity of β‐glucosidase initially increased sharply and then decreased slowly. The maximum reaction rates of the four cell‐wall‐degrading enzymes were ranked as follows: xylanase > PMG > β‐glucosidase > Cx. Additionally, the affinities of these enzymes with substrates were ranked as follows: PMG < Cx < xylanase < β‐glucosidase.
Reference35 articles.
1. The Necrotrophic Fungus Macrophomina phaseolina Promotes Charcoal Rot Susceptibility in Grain Sorghum Through Induced Host Cell-Wall-Degrading Enzymes
2. Strangers in the matrix: plant cell walls and pathogen susceptibility
3. Cloning of laccase gene fragments and detection of laccase activity in Setosphaeria turcica;Cao Z. Y.;Acta Agriculturae Boreali‐Sinica,2011
4. The difference of biological characteristics between Pestalotiopsis theae and Pestalotipsis guepini and observation of pathogenicity;Chen Y.;Journal of Tea Science,2009