The importance of habitat type and historical fire regimes in arthropod community response following large‐scale wildfires

Author:

Holmquist Anna J.12ORCID,Cody Markelz R. J.3,Martinez Ciera C.134,Gillespie Rosemary G.1

Affiliation:

1. Department of Environmental Science, Policy and Management University of California: Berkeley Berkeley California USA

2. Center for Comparative Genomics California Academy of Sciences San Francisco California USA

3. Berkeley Institute for Data Science University of California: Berkeley Berkeley California USA

4. Eric and Wendy Schmidt Center for Data Science and Environment University of California: Berkeley Berkeley California USA

Abstract

AbstractNovel wildfire regimes are rapidly changing global ecosystems and pose significant challenges for biodiversity conservation and ecosystem management. In this study, we used DNA metabarcoding to assess the response of arthropod pollinator communities to large‐scale wildfires across diverse habitat types in California. We sampled six reserves within the University of California Natural Reserve System, each of which was partially burned in the 2020 Lightning Complex wildfires in California. Using yellow pan traps to target pollinators, we collected arthropods from burned and unburned sites across multiple habitat types including oak woodland, redwood, scrub, chamise, grassland, forest, and serpentine habitats. We found no significant difference in alpha diversity values between burned and unburned sites; instead, seasonal variations played a significant role in arthropod community dynamics, with the emergence of plant species in Spring promoting increased pollinator richness at all sites. When comparing all sites, we found that burn status was not a significant grouping factor. Instead, compositional differences were largely explained by geographic differences, with distinct communities within each reserve. Within a geographic area, the response of arthropods to fire was dependent on habitat type. While communities in grasslands and oak woodlands exhibited recovery following burn, scrublands experienced substantial changes in community composition. Our study highlights the importance of examining community responses to wildfires across broad spatial scales and diverse habitat types. By understanding the nuanced dynamics of arthropod communities in response to fire disturbances, we can develop effective conservation strategies that promote resilience and maintain biodiversity in the face of increasing wildfire frequency and severity driven by climate change.

Funder

Office of the President, University of California

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3