3D genome perspective on cell fate determination, organ regeneration, and diseases

Author:

Zhong Hongxin1234,Zhang Jie1234,Lu Yuli1234,Hu Gongcheng5,Pan Guangjin1234ORCID,Yao Hongjie5ORCID

Affiliation:

1. CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China

2. GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China

3. University of Chinese Academy of Sciences Beijing China

4. Institute of Stem Cell and Regeneration Chinese Academy of Sciences Beijing China

5. Guangzhou Laboratory Guangzhou China

Abstract

AbstractThe nucleosome is the fundamental subunit of chromatin. Nucleosome structures are formed by the combination of histone octamers and genomic DNA. Through a systematic and precise process of folding and compression, these structures form a 30‐nm chromatin fibre that is further organized within the nucleus in a hierarchical manner, known as the 3D genome. Understanding the intricacies of chromatin structure and the regulatory mode governing chromatin interactions is essential for unravelling the complexities of cellular architecture and function, particularly in relation to cell fate determination, regeneration, and the development of diseases. Here, we provide a general overview of the hierarchical structure of chromatin as well as of the evolution of chromatin conformation capture techniques. We also discuss the dynamic regulatory changes in higher‐order chromatin structure that occur during stem cell lineage differentiation and somatic cell reprogramming, potential regulatory insights at the chromatin level in organ regeneration, and aberrant chromatin regulation in diseases.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3