Contribution of the stress-induced degeneration of the locus coeruleus noradrenergic neurons to the pathophysiology of depression: a study on an animal model

Author:

Kitayama Isao T.,Otani Masato,Murase Sumio

Abstract

A novel theory on the pathophysiology of depression would be expected to resolve a contradiction between therapeutic time lag and monoamine hypothesis. On the basis of the fact that a subgroup of depression appears during or after stress, we exposed rats to a long-term (2 weeks) forced walking stress and produced depression-model rats in one group and spontaneous recovery rats in another. The density of axon terminals of the locus coeruleus (LC) neurons in the frontal cortex stained by dopamine β-hydroxylase antiserum was lower in the depression-model rats than in the spontaneous recovery rats and in the control rats without stress. The density was higher in the model rats daily treated with imipramine than in those treated with saline. Morphological projection (MP) index (a percentage of horseradish peroxidase-positive LC cells in total number of LC cells) and electrophysiological projection index (a percentage of LC neurons activated antidromically by electrical stimulation of the cerebral cortex) were lower in the depression-model rats than in the recovery and control rats. MP index was higher in the imipramine-treated rats than that in the saline-treated rats. Electron microscopic examination of the LC disclosed such degenerative changes as low-dense areas without structure, aggregation of intracellular organs, destroyed membranes around the rough endoplasmic reticulum (rER), a decreased number of deformed subsurface cisterns, glia invaginated into the LC neurons and prominent appearance of microglia containing increased number of lipofustin or lysosome in the model rats, but not in the spontaneous recovery rats. These findings suggest that the terminals and cell bodies of the LC noradrenergic neurons degenerate in the stress-induced depression-model rats and regenerate in the imipramine-treated model rats. This degenerative change may possibly contribute to the decrease in synthesis and metabolism of noradrenaline (NA), the slowing of axonal flow, the accumulation of NA in the neurons, the decrease in discharge rate of LC neurons without stress and the increase in release of NA in response to an additional stress. It may also explain the therapeutic time lag that is required to repair the noradrenergic neurons.

Publisher

Cambridge University Press (CUP)

Subject

Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3