Mechanical Deviations in Stride Characteristics During Running in the Severe Intensity Domain Are Associated With a Decline in Muscle Oxygenation

Author:

Chalitsios Christos12ORCID,Nikodelis Thomas1ORCID,Mougios Vassilis3ORCID

Affiliation:

1. Biomechanics Laboratory, School of Physical Education and Sports Science at Thessaloniki Aristotle University of Thessaloniki Thessaloniki Greece

2. R&D Kinvent – Biomechanique Montpellier France

3. Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sports Science at Thessaloniki Aristotle University of Thessaloniki Thessaloniki Greece

Abstract

ABSTRACTWe explored the impact of running in the severe intensity domain on running mechanics and muscle oxygenation in competitive runners by investigating the relationship between mechanical deviations from typical stride characteristics and muscle oxygen saturation (SmO2) in the quadriceps muscle. Sixteen youth competitive runners performed an 8‐min exhaustive running test on an outdoor track. Running mechanics were continuously monitored using inertial measurement units. Rectus femoris SmO2 and total hemoglobin (a measure of blood volume) were continuously monitored by near‐infrared spectroscopy. One‐class support vector machine (OCSVM) modeling was employed for subject‐specific analysis of the kinematic data. Statistical analysis included principal component analysis, ANOVA, and correlation analysis. Mechanical deviations from typical stride characteristics increased as the running test progressed. Specifically, the percentage of outliers in the OCSVM model rose gradually from 2.2 ± 0.8% at the start to 43.6 ± 28.2% at the end (p < 0.001, mean ± SD throughout). SmO2 dropped from 74.3 ± 8.4% at baseline to 10.1 ± 6.8% at the end (p < 0.001). A moderate negative correlation (r = −0.61, p = 0.013) was found between the average SmO2 and the percentage of outlier strides during the last 15% of the run. During high‐intensity running, alterations in running biomechanics may occur, linked to decreased quadriceps muscle oxygenation. These parameters highlight the potential of using running kinematics and muscle oxygenation in training to optimize performance and reduce injury risks. Our research contributes to understanding biomechanical and physiological responses to endurance running and emphasizes the importance of individualized monitoring.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3