Hindcasted Body Temperatures Reveal Underestimated Thermal Stress Faced by Intertidal Species

Author:

Ma Lin‐Xuan1,Wang Jie1,Denny Mark W.2,Dong Yun‐Wei13ORCID

Affiliation:

1. The MOE Key Laboratory of Mariculture, Fisheries College Ocean University of China Qingdao China

2. Hopkins Marine Station of Stanford University Pacific Grove California USA

3. Function Laboratory for Marine Fisheries Science and Food Production Processes Pilot National Laboratory for Marine Science and Technology Qingdao People's Republic of China

Abstract

ABSTRACTAimAs global climate changes, there is a clear mismatch between the temporal and spatial characteristics of body temperature and environmental temperature, confounding the assessment of thermal stress for organisms in many ecological studies. Here, we hindcast the hourly body temperatures of intertidal molluscs to explore the differences between them and environmental temperatures (air and water temperatures) in multiple metrics of thermal stress.LocationIntertidal shores in East Asia (0°–45°N, 100°E–140°E).Time Period40 years, 1980 to 2019.Major Taxa StudiedMollusca.MethodsWe collected habitat zonation data and measured the morphological characteristics of 25 intertidal molluscs living in East Asia. For three different types of intertidal molluscs (i.e., bivalves, limpets and snails), we built corresponding heat budget models (HBMs) to hindcast the hourly body temperatures from 1980 to 2019. We analysed the thermal stress of intertidal species faced in three metrics, annual extreme high temperatures (T99), seasonal daily maximum temperatures (DMT) and heatwaves, and compared them with environmental temperatures.ResultsWe found that T99 of body temperatures and their interannual warming rates are significantly higher than those of environmental temperatures. Moreover, there were non‐negligible mismatches between the seasonal thermal pattern and heatwaves of body temperatures and environmental temperatures, suggesting that the deleterious impacts of global warming on intertidal species are underestimated and cannot be directly revealed by environmental temperatures.Main ConclusionsThermal stress patterns of body temperature were significantly different from those of environmental temperature, and the thermal stress faced by intertidal species had been persistently underestimated. These results emphasise that body temperature should be used as the appropriate metric for evaluating and predicting the impacts of global warming and weather extremes in the intertidal biological system.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3