Diet Evolution and Body Temperature in Tetrapods: Cool Old Carnivores and Hot Young Herbivores

Author:

Saban Kristen E.1,Wiens John J.1ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona USA

Abstract

ABSTRACTAimDiet is a key aspect of life in animals. There have been numerous independent origins of herbivorous diet across animals, but the factors that explain these origins remain poorly understood. One potentially crucial factor is body temperature (Tb), as the gut‐dwelling bacteria that help digest cellulose in many herbivores are thought to require high temperatures. However, analyses in birds, lizards and mammals found only limited evidence for higher Tb in herbivores than in carnivores. These analyses tested whether diet explains Tb evolution. Here, we focus instead on testing whether Tb helps explain the evolution of diet across tetrapods.LocationGlobal.Time PeriodPast 350 million years.Major Taxa StudiedTetrapods.MethodsWe analysed 1712 species with matched data on diet and Tb using diverse phylogenetic methods.ResultsAncestral reconstructions indicated that tetrapods likely had a carnivorous ancestor, followed by repeated transitions to omnivory and herbivory, especially in the last 110 million years. Thus, extant herbivorous lineages in tetrapods are relatively young, in contrast to many older carnivorous lineages. They are also relatively unstable in that reversals from herbivory back to omnivory and from omnivory back to carnivory were as frequent as the origins of herbivory and omnivory. Using phylogenetic logistic regression, we support the hypothesis that higher Tb helps explain the evolution of herbivory across tetrapods and within birds, mammals, lepidosaurs and turtles. Phylogenetic path analyses suggest that Tb generally drives the evolution of herbivory, and not vice versa. Our analyses also suggest that Tb is more important for the evolution of herbivory than large body size or diurnal diel activity, which are both significant predictors of herbivory in some cases.Main ConclusionsOur results show for the first time that Tb is a significant predictor of diet evolution among and within many major animal clades.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3