The effect of the relationship between punch velocity and particle size on the compaction behaviour of materials with varying deformation mechanisms

Author:

Roberts R J1,Rowe R C1

Affiliation:

1. ICI Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire, SK10 2TG, UK

Abstract

Abstract The effect of punch velocity over the range 0.033–300 mm s−1 on the compaction properties of lactose, microcrystalline cellulose and a drug substance (a phthalazine derivative) for a range of particle sizes has been studied using the yield pressure derived from the Heckel relationship and a strain rate sensitivity index (SRS index), as the criteria to describe their behaviour. For lactose, a material which deforms by a mixed mechanism of particle fracture and plastic deformation at the contact points, the yield pressure increased and the SRS index decreased as particle size decreased, due to a reduction in the amount of fragmentation of the particles. For microcrystalline cellulose, a material which is known to deform plastically, the yield pressure and the SRS index were independent of particle size. For the phthalazine derivative the yield pressure increased as particle size decreased; however the SRS index reduced from 41% to zero, indicating that the deformation mechanism was changing from plastic flow to brittle behaviour. This decrease in the SRS index has been explained in terms of the relative amounts of strain-hardened material produced as milling severity increased, resulting in an increasing resistance to deformation and thus an apparent increase in brittle behaviour as particle size decreased.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3