Enhanced Anticancer Therapy Mediated by Specialized Liposomes

Author:

Dass Crispin R1,Walker Todd L1,Burton M A1,Decruz Exmond E1

Affiliation:

1. School of Biomedical Sciences, Charles Sturt University - Riverina, P. O. Box 588, Wagga Wagga 2678, Australia

Abstract

Abstract It has been a central aim of experimental and clinical therapeutics to deliver therapeutic agents as close as possible to, or if possible within, a diseased cell. Such targeting achieves two major aims of drug delivery, the maximum dose of therapeutic agent to the diseased cell and avoidance of uptake by and, usually, accompanying side-effects to normal, healthy cells. Conventional liposomes, originally used for studies in membrane biophysics and biochemistry, have been used in therapy for the past two decades. However, when applied to deliver drugs into cells, conventional liposomes proved inefficient and so novel unconventional or specialized liposomes are constantly being prepared to enhance cell-specific delivery in-vivo. One possible way of achieving better targeting is combination of the positive attributes of more than one specialized type of liposome into one vesicle. Although a limited number of studies has examined the combined effect of such dual-speciality liposomes, more studies are warranted using appropriate models. Liposomes are composed of one, a few, or many concentric bilayer membranes which alternate with aqueous spaces. The drugs are encapsulated within the aqueous internal volume if they are hydrophilic or in the lipid bilayers if they are hydrophobic (Kim 1993). Liposomes range in size from 25 nm to more than 20 μm (Sugarman & Perez-Soler 1992). Depending on their solubility and method of formulation antimicrobial, cytotoxic and other conventional drugs, hormones, antigens, enzymes, genetic material, viruses and bacteria can be incorporated in either the aqueous or hydrophobic phase. This review discusses the types and characteristics of non-conventional liposomes used in various modes of cancer therapy, mainly chemotherapy and gene therapy. It concludes with suggestions on improving these novel liposomal to effect better targeting to cancer cells.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference54 articles.

1. Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice.;Ahmad;Cancer Res.,1993

2. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells.;Allen;Biochim. Biophys. Acta.,1995

3. Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy.;Behr;Bioconjugate Chem.,1994

4. pH-sensitive, cationic liposomes—a new synthetic virus-like vector.;Budker;Nature Biotechnol.,1996

5. Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture.;Chu;Pharm. Res.,1990

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3