Biochemical Basis for Deficient Paracetamol Glucuronidation in Cats: an Interspecies Comparison of Enzyme Constraint in Liver Microsomes

Author:

Court Michael H1,Greenblatt David J1

Affiliation:

1. Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston MA 02111, USA

Abstract

Abstract Unlike most other mammalian species, domestic cats glucuronidate phenolic compounds poorly and are therefore highly susceptible to the toxic side effects of many drugs, including paracetamol. In this study, we evaluated the role of enzyme constraint, a characteristic that limits the activity of all uridine 5′-diphosphoglucuronosyltransferase (UGT) enzymes, in the aetiology of this species-dependent defect of drug metabolism. Detergent activation experiments were performed using hepatic microsomes from cats (4), dogs (4), man (4), and 6 other mammalian species (1 liver each). In addition, we used microsomes from Gunn rats which are sensitive to paracetamol toxicity because of a genetic defect affecting all family 1 UGTs. Increase in paracetamol-UGT activity at optimum concentrations of detergent was used as an index of enzyme constraint. Native activity (measured in the absence of detergent) was less than one-sixth in cats compared with other species. Optimum detergent treatment tended to enhance rather than abolish this difference, however, indicating relatively lower levels of constraint of paracetamol-UGT in cats compared with other species. Similarly, detergent treatment failed to reduce the native activity difference between homozygous mutant and normal Gunn rats. Initially CHAPS (3-(3-cholamidopropyl)-dimethylamrnonio-1-propanesulphonic acid) was used as the detergent activator; in 3 of 4 microsomal preparations from man, however, inhibition rather than activation was observed at all detergent concentrations used. Studies were repeated using the non-ionic detergent, Brij 58 (polyoxyethylene 20-cetyl ether), which resulted in similar although more profound activation and no inhibition. We conclude that deficient paracetamol glucuronidation in cats does not result from increased paracetamol-UGT constraint in this species compared with other mammalian species. Other causes, such as differences in enzyme protein concentration or substrate affinity might be responsible.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Anesthesia and Analgesia – Dogs and Cats;Veterinary Anesthesia and Analgesia;2024-06-21

2. Feline toxicology: quick guide for consultation;Journal of Dairy, Veterinary & Animal Research;2023-05-02

3. Adenine-related compounds modulate UDP-glucuronosyltransferase (UGT) activity in mouse liver microsomes;Xenobiotica;2021-11-02

4. Mechanism of dasabuvir inhibition of acetaminophen glucuronidation;Journal of Pharmacy and Pharmacology;2021-10-29

5. Precision/Genomic Medicine for Domestic Cats;Veterinary Clinics of North America: Small Animal Practice;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3