Effects of Different Agents on the Contractile Response Elicited by Extracellular Calcium after Depletion of Internal Calcium Stores in Rat Isolated Aorta

Author:

Noguera M Antonia1,D’Ocon M Pilar1

Affiliation:

1. Laboratorio de Farmacognosia y Farmacodinamia, Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Avda. Blasco Ibañez 13. 46010 Valencia, Spain

Abstract

Abstract Noradrenaline, 1 μm, induced a sustained contractile response in rat isolated aorta in the presence and in the absence of extracellular Ca2+. After depleting the noradrenaline-sensitive intracellular Ca2+ stores, an increase in the basal tone of the aorta was observed during the incubation period in the presence of Ca2+ and in the absence of the agonist. We have tested the possible pathways through which Ca2+ enters the cell to refill the previously depleted Ca2+ pools, a process that is accompanied by an increase in tension. The magnitude of this increase does not depend on the presence of Mg2+ in the extracellular medium nor on the temperature, suggesting that it is mediated by an event that does not depend on intracellular energy or Ca2+, Mg2+-ATPase. It is inhibited in a concentration-dependent manner by an unspecific relaxing compound, caffeine, and an organic Ca2+ entry blocker, verapamil, but not by an inorganic Ca2+ entry blocker, lanthanum. Caffeine (10 Mm) and verapamil (10−5 m) completely inhibited the increase in the resting tone, but only verapamil abolished the refilling of the noradrenaline-sensitive Ca2+ pools, indicating that the extracellular Ca2+ enters the cell through voltage-operated Ca2+ channels. Caffeine inhibited the increase in the resting tone without blocking the refilling process of the stores at 37°C, but at 25°C a partial inhibition of the repletion of internal Ca2+ pools was observed. These results confirm previous work that showed a temperature-dependent activity of caffeine.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3