Synthesis and antimalarial activity of ethylene glycol oligomeric ethers of artemisinin

Author:

Steyn Minette1,N'Da David D1,Breytenbach Jaco C1,Smith Peter J2,Meredith Sandra2,Breytenbach Wilma J3

Affiliation:

1. Pharmaceutical Chemistry, Potchefstroom, South Africa

2. Pharmacology, University of Cape Town, Groote Schuur Hospital, Observatory, South Africa

3. Statistical Consultation Services, North-West University, Potchefstroom, South Africa

Abstract

Abstract Objectives The aim of this study was to synthesize a series of ethylene glycol ether derivatives of the antimalarial drug artemisinin, determine their values for selected physicochemical properties and evaluate their antimalarial activity in vitro against Plasmodium falciparum strains. Methods The ethers were synthesized in a one-step process by coupling ethylene glycol moieties of various chain lengths to carbon C-10 of artemisinin. The aqueous solubility and log D values were determined in phosphate buffered saline (pH 7.4). The derivatives were screened for antimalarial activity alongside artemether and chloroquine against chloroquine-sensitive (D10) and moderately chloroquine-resistant (Dd2) strains of P. falciparum. Key findings The aqueous solubility within each series increased as the ethylene glycol chain lengthened. The IC50 values revealed that all the derivatives were active against both D10 and Dd2 strains. All were less potent than artemether irrespective of the strain. However, they proved to be more potent than chloroquine against the resistant strain. Compound 8, featuring three ethylene oxide units, was the most active of all the synthesized ethers. Conclusions The conjugation of dihydroartemisinin to ethylene glycol units of various chain lengths through etheral linkage led to water-soluble derivatives. The strategy did not result in an increase of antimalarial activity compared with artemether. It is nevertheless a promising approach to further investigate and synthesize water-soluble derivatives of artemisinin that may be more active than artemether by increasing the ethylene glycol chain length.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference31 articles.

1. Artemisinin-based combination therapies for uncomplicated malaria;Davis;Med J Aus,2005

2. Qinghaosu (artemisinin): an antimalarial drug from China;Klayman;Science,1985

3. Qinghaosu;Hien;Lancet,1993

4. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria;De Vries;Drugs,1996

5. Clinical studies on the treatment of malaria with qinghaosu and its derivatives;China Cooperative Research Group on qinghaosu and its derivatives as antimalarials;J Tradit Chin Med,1982

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3