Affiliation:
1. MRC Movement Disorders Research Group, University Department of Neurology and Parkinson’s Disease Society Research Centre, Institute of Psychiatry and King’s College Hospital Medical School, Denmark Hill, London SE5, UK
Abstract
Abstract
The ability of some substituted benzamide drugs to define in-vivo the binding of [3H]spiperone to brain dopamine receptors in rats was assessed using behaviourally effective doses in comparison with haloperidol. As judged using haloperidol, [3H]spiperone identified dopamine receptors in the substantia nigra, striatum, tuberculum olfactorium and. hypothalamus, but not in frontal cortex or nucleus accumbens. The substituted benzamide compounds alizapride, metoclopramide, clebopride and YM 09151-2 prevented the accumulation of [3H]spiperone in the substantia nigra, striatum, tuberculum olfactorium and hypothalamus. However, YM 09151-2 also caused displacement of [3H]spiperone accumulation in the nucleus accumbens and frontal cortex. (±)-Sulpiride, (±)-sultopride, amisulpiride and prosulpride all prevented the accumulation of [3H]spiperone in the hypothalamus but were ineffective in one or more of the other regions containing dopamine receptors defined by [3H]spiperone. The isomers of sulpiride and sultopride stereoselectively defined the accumulation of [3H]spiperone in dopamine containing brain regions. The (-)-isomers of both drugs prevented the accumulation of [3H]spiperone in the substantia nigra, striatum, tuberculum olfactorium and hypothalamus. In contrast, (+)-sulpiride and (+)-sultopride were ineffective. Selected substituted benzamide drugs can be used to define the interaction of ligands with dopamine receptors in-vivo. These substances may be useful in PET studies in man. The isomers of some substituted benzamine drugs may be used to define dopamine receptors in-vivo by enantiomeric selectivity.
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献