Preparation of sustained release rifampicin microparticles for inhalation

Author:

Son Yoen-Ju1,McConville Jason T2

Affiliation:

1. Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA

2. College of Pharmacy, The University of Texas at Austin, Austin, TX, USA

Abstract

Abstract Objectives The aim of this research was to develop a novel carrier-free dry powder formulation of rifampicin for inhalation with controlled-release properties. Methods Rifampicin dihydrate (RFDH) microcrystals were prepared by a polymorphic transformation of rifampicin. The prepared RFDH microcrystals were coated with poly (dl-lactide-co-glycolide) or poly (dl-lactide), using a spray-dryer equipped with two different types of three-fluid (3F) spray nozzles. The physicochemical and aerodynamic properties of the coated RFDH microcrystals were compared with those of conventional matrix microparticles. Key findings The coated RFDH powder, encapsulating 50% of rifampicin, was successfully prepared by simple in-situ coating methods using two different types of 3F nozzles and had mass median aerodynamic diameter values of 3.5–4.5 µm. The thin flaky morphology of RFDH powders, providing good aerosolization properties, was maintained after coating. The coated RFDH formulations showed relatively low initial rifampicin release, compared with the uncoated RFDH crystals, followed by slow rifampicin release (about 70%) over 8 h in phosphate-buffered saline media (pH 7.4). Significant chemical degradations were not observed from the crystalline-structured RFDH formulations, while the amorphous-structured matrix formulations showed chemical degradation in six months. Conclusions These polymer coated RFDH formulations may be a valuable alternative in the treatment of tuberculosis since the carrier-free formulation offers the benefit of delivering a maximum-potency formulation of the antibiotic directly to the site of infection, and long drug residence times may be achieved by the controlled release of the drug.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3