Liposomal topotecan formulation with a low polyethylene glycol grafting density: pharmacokinetics and antitumour activity

Author:

Li Chunlei123,Wang Caixia123,Yang Hanyu123,Zhao Xi123,Wei Na123,Cui Jingxia4

Affiliation:

1. State Key Lab of Novel Pharmaceutical Preparations and Excipients, Shijiazhuang, China

2. Hebei Pharmaceutical Engineering & Technology Research Center, Shijiazhuang, China

3. CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co., Ltd, Shijiazhuang, China

4. School of Pharmacy, Hebei Medical University, Shijiazhuang, China

Abstract

Abstract Objectives PEGylated liposomes could evade recognition by the reticulo-endothelial system and prolong the circulation time of vesicles, resulting in enhanced targeting efficiency and antitumour effect. Typically, vesicles are modified with distearoylphosphatidylethanolamine (DSPE)-polyethylene glycol (PEG) at a high PEG grafting density. However, long circulation time and slow drug release rate might induce severe hand-foot syndrome in clinical practice. In this study, a liposomal topotecan formulation with a low PEG grafting density was prepared and its pharmacokinetics, acute toxicity and antitumour effect were investigated. Methods Topotecan was loaded into liposomes using an ammonium sulfate gradient. The resulting formulation was injected to healthy Wistar rats at different dose levels to investigate whether its clearance followed linear kinetics. Biodistribution was performed in Lewis lung cancer-bearing mice. The acute toxicity was evaluated in healthy mice and beagle dogs. To compare the antitumour effects of different formulations and dose schedule, RM-1 prostate, Lewis lung, H446 and L1210 cancer models were used. Key findings Topotecan could be encapsulated into low DSPE-PEG liposomes with ∼100% loading efficiency. The clearance of the liposomal formulation followed linear kinetics at a dose level ranging from 0.5 to 4 mg/kg despite the fact that the vesicles were coated at a low PEG density. Compared with free topotecan the liposomal formulation preferentially accumulated into tumour zones instead of normal tissues. Both formulations could rapidly accumulate into liver and tumour, but the liposomal formulation was cleared from tissues at a slow rate relative to the conventional formulation. In rats and beagle dogs, liposomal formulations could not induce skin toxicity. In all the tumour models, smaller split doses were more therapeutically active than larger doses when the overall dose intensity was equivalent. Conclusions This has been the first report that plasma kinetics of a liposomal formulation with a low PEG density followed linear kinetics. Moreover, due to its short circulation half-life, the formulation did not induce skin toxicity. Our data revealed that the dose schedule of liposomal drugs should be adjusted in accordance with the biophysical and biological properties of the formulations to achieve the optimal therapeutic efficacy.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3