Application of hydrotropy to transdermal formulations: hydrotropic solubilization of polyol fatty acid monoesters in water and enhancement effect on skin permeation of 5-FU

Author:

Takahashi Koichi1,Komai Megumi1,Kinoshita Natsumi1,Nakamura Emi1,Hou Xiao-Long1,Takatani-Nakase Tomoka1,Kawase Masaya2

Affiliation:

1. Department of Pharmaceutics, School of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan

2. Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan

Abstract

Abstract Objectives A hydrotropic formulation containing a percutaneous enhancer was developed for the transdermal formulation of a water-soluble drug and the solubilizing mechanisms of a percutaneous enhancer in water by a hydrotropic agent were investigated. The enhancement effect was also compared with the hydrotropic formulation and the other formulations using ethanol, propylene glycol or mixed micelles. Methods Sodium salicylate (SA) and sodium benzoate (BA) were selected as hydrotropic agents, and polyol fatty acid ester (POFE) and 5-fluorouracil (5-FU) were selected as a percutaneous enhancer and a water-soluble drug, respectively. Near-infrared (NIR) spectrophotometric and 1H NMR spectroscopic studies were carried out to investigate the solubilizing mechanisms. The mean particle size in the hydrotropic formulation was measured. The in-vitro skin permeation of 5-FU and the accumulation in the skin of propylene glycol monocaprylate (PGMC), one of the monoesters of POFE, from the hydrotropic formulation or the other formulations were investigated by using Franz-type diffusion cell. Key findings The presence of SA and BA had a visible effect on the O–H stretching band of water in the NIR region. The surface tension of SA and BA aqueous solutions was found to decrease with an increase in SA or BA concentration. Although SA interacted with PGMC in the presence of water, it did not interact with PGMC in the absence of water. Mean particle size in a solution consisting of 5% (v/v) PGMC and 30% SA aqueous solution was approximately 14 nm. 1H NMR spectroscopic studies indicated that the hydrotropic salts formed aggregates with which PGMC interacted from the outside. The hydrotropic formulation prepared in this study enhanced skin permeation of 5-FU when compared with the other formulations. Conclusions SA and BA solubilized monoesters of POFE in water, and SA interacted with PGMC in water. The hydrotropic formulation prepared in this study significantly enhanced skin permeation of 5-FU compared with the other formulations. The results suggest that a hydrotropic formulation containing PGMC may be a useful transdermal formulation for water-soluble drugs.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference24 articles.

1. Structure-activity correlations in percutaneous absorption;Guy,1989

2. Penetration enhancer classification;Chattaraj,1995

3. Effect of chemical enhancers on the in vitro percutaneous absorption of sumatriptan succinate;Femenia-Font;Eur J Pharm Biopharm,2005

4. Iontophoresis;Sage,1995

5. Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin;Tokumoto;Int J Pharm,2006

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3