Affiliation:
1. University Department of Neurology, Institute of Psychiatry and The Rayne Institute, King’s College Hospital Medical School, Denmark Hill, London SE5 UK and School of Pharmacy, University of Lausanne, CH-1005 Lausanne, Switzerland
Abstract
Abstract
The substituted benzamide drugs YM 09151-2 and clebopride potently inhibited apomorphine-induced stereotyped behaviour in the rat and caused displacement of the specific binding of [3H]spiperone to D-2 binding sites on striatal membranes in low nanomolar concentrations. Other substituted benzamide drugs including metoclopramide, sultopride and flubepride also inhibited stereotyped behaviour to a greater or lesser degree, but were less potent in displacing [3H]spiperone from D-2 sites. YM 09151-2 and clebopride only weakly displaced specific binding of [3H]piflutixol to D-1 sites on rat striatal membranes, and only weakly inhibited striatal dopamine stimulated adenylate cyclase activity, when compared with cis-flupenthixol. The other substituted benzamide drugs did not displace [3H]piflutixol or inhibit dopamine stimulation of adenylate cyclase activity in the concentration range used. Clebopride and YM 09151-2 were highly lipophilic with apparent partition coefficient (log P') values equivalent to those of classical neuroleptic compounds, such as cis-flupenthixol. In contrast, the other substituted benzamide drugs were markedly less lipophilic. A log P' value of approximately 2 was required before inhibition of adenylate cyclase activity or displacement of [3H]piflutixol binding occurred. However, in excess of this value there was no correlation between either inhibition of adenylate cyclase activity or displacement of [3H]piflutixol binding and the lipophilicity of the various compounds. We conclude that potent lipophilic substituted benzamide drugs, like other members of the substituted benzamide series, are selective D-2 receptor antagonists. Inherent steric factors within the drug series would appear to dictate activity at D-1 and D-2 sites, although lipophilicity may contribute to actions in these environments.
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献