Active Secretion of Drugs from the Small Intestinal Epithelium in Rats by P-Glycoprotein Functioning as an Absorption Barrier

Author:

Terao Toshimitsu1,Hisanaga Etsuko1,Sai Yoshimichi1,Tamai Ikumi1,Tsuji Akira1

Affiliation:

1. Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920, Japan

Abstract

Abstract Because the significance of P-glycoprotein in the in-vivo secretion of β-blockers in intestinal epithelial cells is unclear, the secretory mechanism for β-blockers and other drugs has been evaluated. Uptake of the β-blockers acebutolol, celiprolol, nadolol and timolol, and the antiarrhythmic agent, quinidine by the multidrug-resistant leukaemic cell line variant K562/ADM was significantly lower than that by drug-sensitive K562 cells, suggesting that these β-blockers are transported by P-glycoprotein out of cells. The reduced uptake of acebutolol by the drug-resistant K562/ADM cells was reversed by treating the cells with anti-P-glycoprotein monoclonal antibody, MRK16, whereas no such alteration in uptake was observed for drug-sensitive K562 cells. Acebutolol uptake by K562/ADM cells was, moreover, markedly enhanced, in a concentration-dependent manner, in the presence of the specific P-glycoprotein inhibitors, MS-209 and cyclosporin. Caco-2 cells were used for evaluation of the role of P-glycoprotein in intestinal permeability to drugs in-vitro. Basolateral-to-apical transport of acebutolol was twice that in the reverse direction. A similar polarized flux was also observed in the transport of vinblastine, but not in that of acetamide or mannitol. When in-vivo intestinal absorption was evaluated by the rat jejunal loop method, with simultaneous intravenous administration of a P-glycoprotein inhibitor, cyclosporin, intestinal absorption of both acebutolol and vinblastine increased 2.6- and 2.2-fold, respectively, but no such enhancement was observed in the absorption of acetamide. The effect of cyclosporin on the intestinal absorption of several drugs was further examined, and the extent of the contribution of P-glycoprotein as an absorption barrier to those drugs was evaluated. ATP depletion by occlusion of the superior mesenteric artery resulted in a clear increase in epithelial permeability to vinblastine, but not to 3-O-methylglucose or acetamide, indicating that vinblastine is secreted by ATP-dependent P-glycoprotein into the lumen. These findings demonstrate that P-glycoprotein plays a role as an absorption barrier by transporting several drugs from intestinal cells into the lumen.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3