First-pass Metabolism of Peptide Drugs in Rat Perfused Liver

Author:

Taki Yoko1,Sakane Toshiyasu1,Nadai Tanekazu1,Sezaki Hitoshi1,Amidon Gordon L2,Langguth Peter3,Yamashita Shinji1

Affiliation:

1. Faculty of Pharmaceutical Sciences, Setsunan University, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan

2. The University of Michigan, College of Pharmacy, Ann Arbor, MI 48109, USA

3. Astra Hassle AB, Karragatan 5, S-431 83 Molndal, Sweden

Abstract

Abstract To elucidate the extent and mechanisms of the first-pass metabolism of peptide drugs in the liver after oral administration, a liver perfusion study was performed in rats using metkephamid, a stable analogue of methionine enkephalin, and thyrotropin-releasing hormone (TRH), as model peptides. The fraction of intact metkephamid recovered after single-pass constant perfusion through rat liver reached steady-state very quickly, and it was concluded that metkephamid was hydrolysed enzymatically at the surface of hepatocytes or endothelial cells of microvessels, or both, rather than being taken up by hepatocytes. The fraction of metkephamid recovered intact was approximately 40% under protein-free conditions but increased to 70–75% on addition of bovine serum albumin (BSA) to the perfusate. The fraction of metkephamid bound to BSA was approximately 50% under these conditions, implying that only the free fraction of metkephamid in the plasma was metabolized in the liver. Calculations based on the tube model showed that approximately 30–35% of metkephamid absorbed from the intestine undergoes first-pass metabolism before entering the systemic circulation in-vivo. In contrast, the fraction of TRH metabolized in the liver was less than 10%, indicating a remarkably low contribution of first-pass metabolism to the bioavailability of TRH. These results show that hepatic first-pass metabolism of metkephamid contributes to its low systemic bioavailability. After intestinal absorption free metkephamid is rapidly hydrolysed on the surface of hepatocytes or endothelial cells, rather than being taken up by hepatocytes. This information has important implications in the oral delivery of many kinds of peptide.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3