Mathematical Modelling of Drug Transport in Emulsion Systems

Author:

Yoon Kyung Ae1,Burgess Diane J1

Affiliation:

1. Department of Pharmaceutical Science, School of Pharmacy, University of Connecticut, Box U-92, 372 Fairfield Road, Storrs, CT 06269-2092, USA

Abstract

Abstract Two mathematical models for the prediction of drug transport in triphasic (oil, water and micellar) emulsion systems as a function of micellar concentration have been developed and these models were evaluated by comparing experimental and simulated data. Fick’s first law was used to derive a transport model for hydrophilic drugs, assuming that the oil/water (o/w) partitioning process was fast compared with membrane transport and therefore drug transport was limited by the membrane. Consequetive rate equations were used to model transport of hydrophobic drugs in emulsion systems assuming that the o/w interface acts as a barrier to drug transport. Benzoic acid and phenol were selected as hydrophilic model drugs. Phenylazoaniline and benzocaine were selected as hydrophobic model drugs. Transport studies at pH 3.0 and 7.0 were conducted using side-by-side diffusion cells. According to the hydrophilic model, an increase in micellar concentration is expected to decrease drug transport rates. The effective permeability coefficients (Peff) of drugs were calculated using an equation relating Peff and the total apparent volume of drug distribution (determined experimentally using drug/membrane permeability and partition coefficient values). The hydrophobic model was fitted to the experimental data for the cumulative amount of model drug in the receiver cells using a weighted least-squares estimation program (PCNONLIN). The oil/continuous phase partitioning rates (k1) and the membrane transport rates (k2) were estimated. The goodness of fit was assessed from the correlation coefficients of plots of predicted versus experimental data. The predicted data were consistent with the experimental data for both the hydrophilic and hydrophobic models.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3